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Theory of DNA melting based on the Peyrard-Bishop model
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The DNA melting based on the Peyrard-Bishop~PB! model is systematically investigated. Our study on the
eigenvalues and eigenvectors of the transfer integral equation for the original PB model points out that the
eigenvectors are composed of two kinds: discrete bound states that constitute the internal states of a DNA
molecule and the continuous unbound states that represent its dissociated states. Another process controlling
the melting of DNA—the dissociation equilibrium between duplex and single-stranded DNAs—is introduced,
which leads to an extended model applicable for a realistic DNA chain with a finite number of base pairs.
Based on the expansion of kernels, the calculations of the thermodynamic quantities of the system are reduced
to multiplication of matrix series. Calculations on model block DNAs show the method is much more efficient
than molecular dynamic simulation and has enough high precision to handle the melting of a natural DNA with
arbitrary sequence. The discreteness effect and nonlinear effect of the model are discussed based on the
Gaussian model. Rigorous melting curves for periodic DNA with two and three base pairs in a unit cell and
boundary effects are presented by the transfer integral approach.@S1063-651X~97!01012-X#

PACS number~s!: 87.10.1e, 63.70.1h, 64.70.2p
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I. INTRODUCTION

The structure and dynamics of DNA are the key to und
standing its biological effects and have long been subjec
to extensive theoretical studies. Different phenomena
properties of DNA have been studied theoretically includ
the melting~or denaturation! of DNAs @1#, the large ampli-
tude fluctuations or nonlinear excitations@2#, the structural
transitions such asB-A or B-Z transition@3#, the stabilities
of DNA complexes such as drug DNAs and protein DN
@4#, the interactions with molecules in surroundings such
water and ions@5#, the structures of supercoiled DNAs@6#,
etc. Among these, the study on the melting of DNA plays
extremely important role in understanding the structure
dynamics of DNA.

However, so far, to our knowledge, there still has been
theory satisfactory enough to describe multiple interest
features of DNA melting. The reasons lie in several aspe
As a system with many degrees of freedom, it has rat
different characteristics from those often encountered in c
densed matter physics. Firstly, the structure and dynamic
DNA are very complicated@7#. Experiments and theoretica
analyses indicate that many different excitations could p
sibly coexist in DNA. The motions of the sugar-phospha
backbones can be described by phonons@8#, while the stretch
of hydrogen bonds and the rotation of base pairs may per
to solitons with completely different forms such as kink
breathers, and probably other kinds of solitons@2#. Further-
more, these excitations are strongly coupled to each o
and to the surrounding media@9#. It was pointed out that a
good DNA model must be nonlinear in nature@10#. Sec-
ondly, the interactions that govern the structures and dyn
ics of DNA are not very clear. Because of the complexity
biomolecules, we often have to understand their propertie
the level of atomic groups. The interactions between th
are usually many body in nature and cannot be simplified
the central two-body potentials. Finally, biomolecules ex
561063-651X/97/56~6!/7100~16!/$10.00
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in and interact with the environment, and thus often can
be studied individually because of their strong couplings
biomolecule, which can be regarded as a thermodyna
system@11#, has a large surface to volume ratio compar
with the usual thermodynamic systems. This is similar
surface physics, where the materials absorbed on a sur
can cause great structural changes, such as reconstru
Water molecules and ions also have a significant effect
the structure of biomolecules. The dynamic interaction
tween biomolecules and water, the hydrophobic interact
plays an important role in the structure and dynamics
biomolecules. These interactions, however, remain to be
derstood.

A variety of means for simplification have been adopt
in the theories on the dynamics of DNA. They often fall in
one of two categories. One is to simplify its structure
states of motion, the other is to simplify the interaction p
tentials. At present, there are two principal theories on
melting of DNA, which are both good examples of the abo
categories. One is the helix-coil transition theory based
the Ising model introduced in late 1950s@12#. In this model,
the motion of each base pair is assumed to be in only
states: hydrogen bonded~intact! or non-hydrogen bond-
ed~open!. The other is the lattice dynamic theory based
the modified self-consistent phonon approach~MSPA! @13#.
This theory introduced in 1984 by Prohofsky and co-work
has been widely applied to investigate the melting of DN
and the interactions between DNA and drugs. In their mo
they employed the real configurations of DNAs given
experiment, but assumed harmonic potentials for all bo
except hydrogen bonds, which were represented by Mo
potentials with appropriate parameters. Even with suc
simplification of the interactions, it still seems beyond o
capacity to find rigorous treatment. In their calculation, t
Morse potentials were actually replaced by harmonic pot
tials with force constants self-consistently determined
cording to the principle of minimization of free energy. Thu
7100 © 1997 The American Physical Society
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56 7101THEORY OF DNA MELTING BASED ON THE PEYRARD- . . .
it is a linear lattice dynamic theory in nature.
To some extent, the model adopted in this paper is a c

bination of the above two DNA melting theories. The mod
was presented by Peyrard and Bishop in 1989@10#. In the PB
model, each backbone of DNA is simplified as a one dim
sional chain with nearest neighboring potentials represen
stacking energy. The potential of the hydrogen bond in b
pair is assumed to be Morse potential between the unit
two chains. The main advantages of this model lie in t
aspects. On one hand, for the homogeneous chain, the m
can be solved rigorously using the technique of transfer
tegral ~TI!. By comparing the rigorous results with thos
obtained from perturbative methods such as self-consis
phonon approach~SCPA!, one can investigate the nonline
nature of the DNA melting@14#. On the other hand, it is a
unified model treating the DNA melting and the large amp
tude fluctuation of base pairs in DNA. Dauxois and Peyra
have widely investigated the nonlinear excitations of t
model system@15#.

But as a model for DNA melting, it has only been su
cessfully applied to a special case where the base-pair c
position is homogeneous and the chain is infinite in leng
How to extend the model to a more realistic one, i.e., hav
arbitrary sequences and open boundaries, is still an o
question. There are two main difficulties in making this e
tension. One is related to the divergence of the thermo
namic quantities of this model system@13,16#. It has been
shown that the partition function of the Peyraud-Bishop~PB!
model is convergent only in the limit of infinite number o
base pairsN. The other is the inhomogeneity of the ba
sequence where the transfer integral technique is no lo
valid in this case. In this paper we discuss the methods
solving these difficulties.

We will show that the first difficulty can be solved b
regarding the melting of DNA as being governed by tw
processes: the internal unwinding motion within a single
plex DNA, which can be described by the PB model, and
dissociation equilibrium between double-stranded DNA~C2!
and single-stranded DNA~C1!, i.e.,

C2
2C1 ,

which can be well described by the law of mass action a
has been included in the Ising model of DNA melting@1#.
Here the scope of the ‘‘internal’’ and the ‘‘external’’ motio
is approximately separated by thedynamic diameter din
phase space. With the separation of these two different
tions, the divergence of the thermodynamic quantities of
PB model is avoided.

The second problem can be solved by the expansion
kernels with an appropriate set of orthonormal bases.
partition function can then be expressed as a series of p
ucts of matrices, which are related to the transfer matrice
the Ising model. So the continuum model can be well
proximated by an extended Ising model withM -component
Ising spins, whereM is the number of base functions used
expand the kernels. Thus we extend the two-state helix-
transition theory that relies on macroscopic parameters
M -state theory, which in principle has only microscopic p
rameters. Compared with Prohofsky’s lattice dynam
theory, this model can be viewed as a simplified latt
-
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model that only retains the basic lattice structure and c
degrees of freedom in a DNA chain, but emphasizes
nonlinear effect hidden in it.

This paper is organized as follows: In Sec. II, after intr
ducing the PB model, we investigate the technique of tra
fer integral with a highly singular homogeneous integ
equation, which has not been encountered in the standar
technique and well studied in mathematics as we know.
exhibits the characteristics of the eigenvalues and eigen
tors of the TI equation resulted from this feature. Then
present the dissociation process of duplex DNAs to sing
stranded DNAs so as to construct a complete theory of D
melting according to the partition of the states of DNA mo
ecule. In Sec. III, we investigate the discreteness effect
nonlinear effect of the model, which are two main features
the system, based on the rigorous results of the Gaus
model. Sections IV and V can be considered as the furt
applications of the TI technique. In Sec. IV, we study t
boundary effect of a homogeneous DNA with finite leng
while in Sec. V we calculated the melting curves of period
DNAs with two or three base pairs in a unit cell. We fin
there are no fine structures in these cases. In Sec. VI, we
two versions of ourextended transfermatrix approaches and
compute the melting profiles of two block DNAs with dif
ferent block sizes. The calculations show our approach
practical and has the precision high enough to compute
melting profile of a natural DNA with arbitrary sequenc
Section VII is a discussion.

II. MODEL AND ITS STATISTICAL MECHANICAL BASIS

A. Peyrard-Bishop model

The detailed description of the PB model can be refer
to Refs.@14,17,19#. Here we only give a brief introduction
The motion of the model system can be described by
kinds of variables: the displacement of the center of mas
each base pair and the separation of the bases in the
base pair, denoted byyn . It is the latter that determines th
melting of DNA. After the decoupling of the two kinds o
variables, the concerned Hamiltonian of the system is

Hy5(
n

F1

2
mẏn

21w~yn ,yn21!1V~yn!G . ~1!

HereV(y) is Morse potential

V~y!5D~e2ay21!2 ~2!

andw(yn ,yn21) the potential between the nearest neighb
ing base pairs, representing stacking energy. This Ha
tonian is similar to the Hamiltonians used in the models
structural phase transitions except that the on-site poten
there have two or three minima@20,21#. Therefore results
from the theories on structural phase transitions can be u
to help the understanding of DNA melting as shown late

The form of w(yn ,yn21) is crucial to the model. At
present its direct experimental determination or theoret
calculation is still unavailable. As a result empirical form
have to be developed based on some general principle
the first version of the PB model, they adopted a harmo
potential. It has been shown that the simple harmonic fo
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7102 56ZHANG, ZHENG, LIU, AND CHEN
cannot give a good quantitative description of DNA melti
because the melting scopes given are too wide to determ
melting temperature accurately. Dauxois and Peyraud
sented an anharmonic potential to describe the stacking
ergy later@17#, that is,

w~yn ,yn21!5
k

2
~11re2a~yn1yn21!!~yn2yn21!2. ~3!

This modified version of the PB model was proven to
successful because it may give not only a qualitative but a
a quantitative description of DNA melting. It is to be ou
focus in this paper.

B. Technique of transfer integral

Let

K~x,y!5exp„2b$w~x,y!1 1
2 @V~x!1V~y!#%…, ~4!

where the Boltzmann factor isb51/kT. It is evident that

K~x,y!5K~y,x!. ~5!

The partition function of the system described byHy can
then be written as

Z5E dy1dy2•••dyNK~y1 ,y2!K~y2 ,y3!•••K~yN ,y1!

~6!

in which a periodic condition is adopted and a trivial mo
menta factor is omitted.

In order to solve the partition function, one introduces t
integral equation

E K~x,y!w~y!dy5lw~x!. ~7!

Because of the symmetry of the kernel and

K~x,y!.0,

if we further assume

uuK~x,y!uu[S E E @K~x,y!#2dxdyD 1/2

,`, ~8!

the integral equation then contains a positive Hilbe
Schmidt type kernel@18,22#. So it has a set of positive ei
genvalues and orthonormal eigenvectors. If we denote
eigenvalues asl1, l2, etc. in descending order, an
w1(x),w2(x), etc. as the corresponding eigenvectors, the

E dxwn~x!wm~x!5dnm , ~9!

and

(
n51

1`

wn~x!wn~y!5d~x2y!. ~10!

K(x,y) can be expanded as@18#
e a
e-
n-

o

e

-

e

K~x,y!5(
n

lnwn~x!wn~y!. ~11!

By substitution of the expansion expression ofK(x,y)
into Eq. ~6! and applying the orthonormal and complete r
lations ~9! and ~10!, we have

Z5 (
n51

1`

ln
N . ~12!

Similarly, from transform invariance of the system, we o
tain an average thermal expansion of each base pair,

^y&5
1

Z(
n

^nuyun&ln
N , ~13!

where

^nuyum&[E wn~y!ywm~y!.

At the thermodynamic limit, Eqs.~12! and ~13! can be sim-
plified as

Z5l1
N ~14!

and

^y&5^1uyu1&, ~15!

respectively.
In the above we have given the standard TI techniq

widely used in one- or quasi-one-dimensional syste
@20,21,23#. However, significant differences exist betwe
the PB model and those considered by the standard TI t
nique. In the models using the standard TI technique,
on-site potentials are unbound, thus the condition~8! exists.
However, the Morse potential in the PB model is bound@13#,
which implies formula~8! does not hold. So the kernel~4! is
not a Hilbert-Schmidt type one but a singular kernel defin
on the space@2`,1`;2`,1`#. It is this characteristics of
the kernel that leads to the divergence of the partition fu
tion of the PB model. Because of the nonexistence of
prerequisite~8!, we can easily see that the expansion of t
kernel, which is a crucial step for the TI technique, does
hold any more. This indicates that at least in order to to ca
out the TI technique, an upper bound foryn needs to be se
up. But this is not equivalent to saying that the integral eq
tion ~7! does not constitute an eigenvalue problem. In
following we first study the general features of the eigenv
ues and eigenvectors of this TI equation based on nume
computation. Our strategy is to limit the kernel on a fin
space@a, b; a, b#, therefore its norm exists, and then inve
tigate the case wherea→2` andb→1`.

C. Eigenvalues and eigenvectors of the TI equation

A numerical solution of the integral equation is necess
for this statistical mechanical model. Two kinds of metho
have been used by Dauxois and Peyrard to solve this
equation@16#. One is to discretize the integral by means
summation formulas, then the problem is equivalent to fin
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56 7103THEORY OF DNA MELTING BASED ON THE PEYRARD- . . .
ing the eigenvalues and eigenvectors of a symmetric ma
Here the choice of the quadrature rule is very importa
They tried three different formulas: the trapezoidal rules,
Simpson rule, and the Bode’s integration rules of order 6
10. The last one renders the best accuracy. But even for
one the needed dimension of the matrix should be as larg
144131441. The other approach is Kellog’s method, whi
is convenient to compute the first several eigenvalues
eigenvectors. In this paper, we adopt the first kind of meth
but use Gauss-Legendre quadrature formula. We choose
order of the Gauss-Legendre node to be equal to the num
of the points used to discretize the integration, therefore a
equal to the dimension of the matrix@24#. With this modifi-
cation, we find that a matrix with dimension as small
70370 is enough to give rather accurate results@25#. This
faster algorithm is the guarantee of our work in the n
sections.

At first, we find the relationship between eigenvalues a
eigenvectors of the TI equation and the lower limita is
rather trivial. Whena,20.3 Å, they no longer change. S
in the following we only concentrate on their dependen
on the upper limitb.

Figure 1 shows the changes of the first several eigen
tors and eigenvalues withb and temperature. We can see th
there are two different kinds of eigenvectors. One does
change with the value ofb, indicating that it corresponds t
a bound state; the other changes drastically, indicating th
pertains to an unbound state. When the temperature rises
bound states gradually become unbound as can be seen
the comparison of Figs. 1~a! and 1~b!. From Fig. 1~b! it can
also be found in the interested temperature region from 8
to critical point 350 K, there is only one bound state. As t
temperature is so high that the last bound state becomes
bound, ^y& will increase sharply, indicating the melting o
the system. From Fig. 1~c!, it can be seen that above th
melting temperature, no bound state exists. Figure 1~d!
shows the changes of the four biggest eigenvalues versub.
We find that for a bound state, its eigenvalue does
change withb, which is in agreement with the relationship
its eigenvector andb. While for unbound states, their eigen
values become degenerate with the rise ofb. This feature as
well as the change of the unbound state withb indicates that
all unbound states are degenerated and constitute contin
states. The discrete appearance of their eigenvalues is ca
only by the finite value chosen forb. Here we can find tha
the spectrum of this eigensystem is similar to that deriv
from the Schro¨dinger equation describing a particle movin
in a Morse potential. Because of this similarity in the ma
ematical structure of the two problems, we can see from E
~12! and Eq.~13! that the melting of DNA can be compare
to the dissociation of a two-atom molecule or the ionizat
of an atom under a substitution

ln5e2ben /N, ~16!

whereen corresponds the energy of a molecule or an at
@26,27#.

Figure 2 shows that the first bound state becomes w
when raising the temperature, but at their peaks they
near zero. From Eq.~15!, we find that the widths of thes
states actually represent the scopes of fluctuations of the
x.
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pairs at the corresponding temperatures. Noting their sh
peaks, we can easily see why a high order of the Gau
Legendre node is needed.

Here we understand that, although the kernel is singu
whenb→1`, due to the existence of the bound states,
TI technique still holds for the limitN→` if we get the
thermodynamic limit by takingN→` before b→`. From
Eq. ~13!, we can see

lim
b→`

lim
N→`

^y&5^1uyu1&. ~17!

This suggests that the extreme situation does exist. Howe
when N is finite, because of the existence of the unbou
states in Eq.~13!, ^y& unavoidably diverges whenb→`, as
can be seen from Fig. 3. Similar results were also obtai
by Prohofsky and co-workers from molecular dynam
simulation@13#. This exhibits the inability of the PB mode
to describe the whole process of the DNA melting.

D. Chain dissociation anduext

We can see thatb→1` implies a single double-strande
DNA molecule occupying infinite space. Obviously it is n
a real situation. In the solution of DNA molecules, a gre
deal of them are limited in a finite space. Every DNA mo
ecule is actually in a finite effective space, thus setting
upper bound forb.

It also can be shown that whenN is finite, the PB model
cannot describe the melting completely. Let consider an
treme case where a DNA molecule has only one or sev
base-pairs. We find the melting of the duplex is reduced t
chemical reaction represented by formulaC2
2C1. This
suggests that we can also regard the melting of DNA w
bigger finite base pairs as a chemical reaction except
reaction takes place at a definite small temperature reg
only. Because the total numbers of particles are not c
served, the system should be described by a grand cano
ensemble, which usually leads to a complex theory. Ho
ever, when the concentration is low, which is the very ca
of DNA solution in the melting experiments, the interactio
between the solute molecules, except for the collisions,
negligible. Thus the system comprises an ideal solution. S
pose the solution constitutes ofN1 single-stranded DNA
molecules andN2 double-stranded DNA~duplex DNA! mol-
ecules. The grand partition function for the system is

J~NT ,V,T!5 (
N150

NT Z1
N1

N1!

Z2
N2

N2!
, ~18!

whereZ1 andZ2 are the single-particle partition functions o
single-stranded DNA and double-stranded DNA, resp
tively, andNT5N112N2 is a constant,V the volume of the
solution. Taking the maximum term in the summation f
approximation, we obtain the law of mass action for t
equilibrium C2
2C1, i.e. @12#,

Z2

Z1
2

5
N2

N1
2

5Keq. ~19!
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FIG. 1. ~a!–~c! show the eigenfunctions calculated at differentb labeled by the numbers~in Å! near the corresponding curves an
different temperatures. In~a! w1 andw2 are bound states that do not change withb, while w3 as an unbound state does. When temperat
rises to 150 K,w2 becomes an unbound state.~c! indicates that atT5355 K, which is above the melting temperatureTm5350 K, no bound
state exists any more.~d! shows the curves ofln vs b. The parameters areD50.04 eV,a54.45 Å21, k50.04 eV Å22, a50.35 Å21, and
r50.5.
to
m

d
ol
g,

-

g

The single-particle partition functions can be factored in
contributions from external and internal degrees of freedo
viz.,

Z1~V,T!5Z1,ext~V,T!Z1,int~T!,

Z2~V,T!5Z2,ext~V,T!Z2,int~T!, ~20!

whereZ1,ext(V,T),Z2,ext(V,T) represent the translational an
rotational motion of the corresponding species as a wh
whose forms were given in the Ising model of DNA meltin
,

e,

andZ1,int(T) andZ2,int(T) mainly include the vibrational de
grees of freedom@1#. For the PB model,

Z1,int5S 2p

bk D N/2

e2bND ~21!

is the partition function of a single harmonic chain movin
on the plateau of the Morse potential.Z2,int will be discussed
below.
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Defineuext as the fraction of double-stranded DNA, whic
do not completely denature, i.e., having at least one in
base-pair. Then

uext52N2 /NT5
4NTKeq112A118NTKeq

4NTKeq
. ~22!

FIG. 2. The curves ofw1 at different temperatures. Note that th
sharp peak ofw1 is related with the fact that the continuum approx
mation is unjustifiable for this model system.

FIG. 3. The^y& vs b calculated by Eq.~44! for three values of
N, 250, 500, and 1000, at two different temperatures, 340 and
K. Each curve is labeled by two numbers, indicating theN and the
temperature, respectively. We can see that the velocity of the d
gence of̂ y& is drastically affected by the total number of base pa
and temperature. Divergence is obvious in all cases. To get
above curves, the number of the Gauss-Legendre nodes us
solve the TI equation~7! is chosen to be 800.
ct

E. Z2,int , dynamic diameter and u int

Based on the above factorization of the partition fun
tions, we find that forZ2,int , it is only bound states tha
should be taken into account for the summation in Eq.~12!,
i.e.,

Z2,int5 (
bound states

ln
N . ~23!

Correspondingly, the thermal expansion of the base pa
rewritten as

^y&5
1

Z (
bound states

^nuyun&ln
N . ~24!

With the above modification, the divergence of the th
modynamic quantities is naturally eliminated. Note that E
~23! and ~24! are correct only for the homogeneous cha
with periodical boundary condition where the standard
technique is applicable. In the following, we strive to exte
the formulas so that it can hold for the inhomogeneous ch
with open boundaries.

From Eq.~15!, we see that the thermodynamic quant
^y& exhibits an internal product form. This implies th
uw1(y)u2 can be regarded as the probability density who
scope represents the fluctuations of the base pairs in a D
molecule. Figure 2 shows that this scope changes with t
perature. We define the scope of the eigenvector just be
the melting temperature as thedynamic diameter~denoted by
d) of duplex DNA molecule because it is the largest sepa
tion of a base pair due to the fluctuations. Wheny.d, the
probability amplitude ofy is nearly zero. This suggests tha
as an approximation, we can choose the subspace@2`,d# of
the phase space of the system as the range occupied b
ternal states, which leads to a modified PB model w
Hamiltonian

Hy ,~2`,y1 ,y2 , . . . ,yN,d!. ~25!

The above treatment implies that the PB model only
scribes the internal motion of a double-stranded DNA m
ecule. The value ofd can be estimated from Fig. 2. For th
parametersD50.04 eV, a54.45 Å21, k50.04 eV Å22,
a50.35 Å21, andr50.5 @17#,

d'30 Å.

It can be proved that, for the homogeneous chain with p
odic boundaries, the above definition of the internal state
the phase space coincides with the original separation in
spectrum of the TI equation where the bound states con
tute internal states. According to the former,Z2,int is equal to
the Z in Eq. ~12! and ^y& is still expressed by Eq.~13!,
except the concerned eigenvalues and eigenvectors perta
the TI equation withb5d. Because in this case all states a
nondegenerate, the series in Eqs.~12! and ~13! are conver-
gent. In the numerical computation, it is found that the fi
ten states ensure the convergences whenN.200. Figure 4
shows^y& for different N calculated by two kinds of meth
ods. It can be seen that, although excited states bes
w1(y) are included in the summation, their contribution
^y& is negligible. If ^y&52 Å is defined as a melting crite
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rion of base pairs, the resulted shifts of the melting points
less than 3 K when N.200. This indicates that for long
chains, the definitions of the two kinds of internal states
consistent and the introduction ofd is reasonable.

Besides the chain dissociation, partly unstacking withi
double-stranded DNA molecule is obviously extremely i
portant, especially for long DNA molecules. According
the above separation of the motion of DNA molecule, t
process is governed by the modified PB model. Here we g
a threshold of the stacking and unstacking of base pairs
duplex DNA molecule. When thêy& of a base pair exceed
a certain value, it can be regarded as out of stacking. For
time being, we have to determine this value from the poin
the model itself. The criterion for choosing the thresho
should be that when̂y& exceeds the value, it diverges wit
slight temperature increase. We find from Fig. 4 that
threshold value of 2.0 Å is appropriate for this purpose a
be used throughout the paper. The ratio of the number of
internal unstacking base pairs to the number of total b
pairs is defined asu int .

It has been noted that, since we choose^y&52 Å, as the
criterion of the melting of a base pair, the ground state of
TI equation at this critical temperature is insensitive to d
ferent parameters of the model, such asD50.038 eV or
D50.042 eV~with other parameters unchanged!. This indi-
cates that it is reasonable for us to extend the concept ofd to
an inhomogeneous chain. In the following calculations,
setd to b.

In short, we consider that the melting of an ensemble
DNA molecules consists of two processes: one is the
stacking of base pairs in a single duplex DNA molecu
which is described by the modified PB model with t
Hamiltonian given in formula~25! and the other is the dis
sociation processC2
2C1, which is governed by the law o
mass action. The average faction of the unstacking b
pairs,u(T), of the ensemble is given by

FIG. 4. ^y& vs T calculated by Eq.~13! with b530 Å. The curve
labeled ‘‘N5` ’’ is calculated by Eq.~15!, which is overlapped by
the curve ‘‘N5500.’’
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u~T!5u intuext. ~26!

The calculation ofuext has been included in the Isin
model of DNA melting. In the following we mainly conside
the computation ofu int . This corresponds to the case of lon
DNAs (N.600) because for long DNA, the internal un
winding process governs the melting transition, i.
u(T)'u int(T) @1#.

III. DISCRETENESS AND NONLINEAR EFFECTS

It has been shown by direct comparisons and other ca
lations that the model system has strong discreteness e
and nonlinear effect@14,28#, which cause significant conse
quences@15,29#. In this section, we investigate these effec
from another point of view. The calculations are based on
self-consistent phonon approximation, taking advantage
Gaussian model@22#.

In Eqs.~2! and~3!, when temperature is low, the displac
mentyn is small, an harmonic approximation for the Mors
potential and stacking energy is legitimate. Neglecting
trivial kinetic terms, the Hamiltonian is approximately equ
to

H05(
n

Ff2 ~un2un21!21
V2

2
un

2G , ~27!

whereun5yn , andf andV2 are defined by

f5k ~28!

and

V252a2D. ~29!

Since the HamiltonianH0 has the form of a Gaussian mod
in statistical mechanics, its results can be conveniently u
Thus we get the free energy per base pair

f 52
1

2b
ln

8p

b~V1AV214f!2
~30!

and correlation functions

^u2&[^un
2&5

1

bVAV214f
, ~31!

^v2&[^unun11&5S 11
V2

2f D ^u2&2
1

2bf
. ~32!

In order to investigate the continuum-limit approximatio
we recalculate the free energy ofH0 by the TI technique.
Defining the kernel

T~x,y!5expS 2bFf2 ~x2y!21
V2

2
x2G D ~33!

and using the identity@30#
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E dyexpF2
1

2t
~x2y!2G f ~y!5A2ptexpS t

2

]2

]x2D f ~x!

~34!

and bearing in mind the continuum approximation, which
equal to the commutation of two operators here@23#, we
simplify the TI equation into an ordinary differential equ
tion

S 2
1

2bf

]2

]x2
1

1

2
bV2x2D w~x!5S 1

2
ln

2p

bf
2 lnl Dw~x!.

~35!

The free energy of the system in the continuum approxim
tion according to its largest eigenvalue is

f c52
1

2bS ln
2p

bf
2AV2

f D . ~36!

Comparing Eq.~30! to Eq. ~36! the condition of the con-
tinuum approximation keeping the exact free energyf close
to f c is

j[
V2

2f
!1. ~37!

This result agrees with Ref.@30#.
For the typical parameters given in Sec. II E,

j'13.1. ~38!

The continuum approximation does not hold here at
which implies the system has strong discreteness effect.

In the above we assumed that the displacementyn is
small, which corresponds to the low temperature case.
analysis does not hold for higher temperature. However,
ing advantage of SCPA@16,31#, which is appropriate for
relatively higher temperature, we can replay the treatmen
such a case,H0 becomes an effective Hamiltonian an
un5yn2h with h[^y&. Equations~28! and ~29! are re-
placed by

f5k$11r@12a2~^u2&2^v2&!#e22ah1a2~^u2&1^v2&!%
~39!

and

V252Da~2a2a!e2ah11/2 a2^u2&

14Da~a2a!e22ah12a2^u2&, ~40!

respectively.h is determined by equation

Da@e2ah1 1/2 a2^u2&2e22ah12a2^u2&#

5akr@^u2&2^v2&#e22ah1a2~^u2&1^v2&!. ~41!

Equations~31!, ~32!, ~39!, ~40!, and ~41! depend on each
other and could be solved self-consistently. Figure 5 showj
versus temperature. It shows that for the whole tempera
region calculated by SCPA,j.1, indicating the invalidity of
the continuum approximation for the system. It must
s

-

l,

e
k-

In

re

e

noted that, because of the strong nonlinear effect, only be
200 K or so can SCPA give correct results, as shown by F
6. For temperature higher than 200 K, direct comparison
been given by Dauxoiset al. @14#. Combining the two meth-
ods, it is proved that the system exists strong discreten
effect.

In Fig. 6, we comparêy& obtained by SCPA to the exac
results obtained by the TI technique. It is shown that two s
of results are very different. For rigorous calculations, wh
the anharmonic stacking energy is adopted, the results
improved distinctly. But for the SCPA, the results are alm
the same. This indicates the limitations of the SCPA in tre
ing strongly nonlinear system.

FIG. 5. j vs T for harmonic stacking potential (r50) and an-
harmonic potential (r50.5).

FIG. 6. The curveŝ y&-T calculated by the rigorous TI tech
nique or SCPA with harmonic or anharmonic stacking potentia
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IV. BOUNDARY EFFECTS

So far we only consider cases with periodic bound
conditions. We do not expect different boundary conditio
to be important for long chain DNAs, but for short cha
ones, boundaries may have significant effects on the me
of DNAs. Because of advantages of shorter moleculers o
kilo-base-pair~kbp! long molecules, such as the simplific
tions of the theory-experiment comparisons and convenie
of controlling the systems in equilibrium states, shor
DNAs with 1002600 bp are far more often adopted expe
mentally. It has been pointed out that the melting proc
undergoes internal loops formation and end unwinding.
short DNAs, due to the high free energy costs in formi
internal loops, the end meltings will govern the unwindi
processes@1#. Aiming at showing boundary effects, we co
sider the case of open boundaries and investigate the ef
of the end unwinding on the melting of DNAs with differen
lengths. Extension from the periodic boundary condition
open boundary condition is straightforward.

We define

am[E dywm~y!e21/2 bV~y! ~42!

and

ymn[^muyun&. ~43!

As the transform invariance no longer exists, the therm
averagê yi& depends upon the positions of base pairs in
whole chain wherei denotes thei th base pair. Thus

^yi&5(
mn

amanymnDm
i 21Dn

N2 iY (
m

am
2 Dm

N21 , ~44!

where Dm[lm /l1. The above summation includes a
eigenstates of the TI equation in principle. However, num
cal experiment shows that inclusion of the first ten eig
states is good enough to guarantee the convergences of^yi&.

The numerical results are presented in Fig. 7 and Fig
The curves in Fig. 7 are the thermal expansion curves of
DNAs with 1000 and 3000 bp in different temperatures.
can be found that the expansions of base pairs near
boundaries are the same for long DNAs, i.e., independen
N. This fact presents the characteristics of the model w
nearest-neighboring interaction. Figure 8 shows the ca
lated differential melting curvesdu int /dT for DNAs with
different lengths. We can see that for short DNA, the bou
ary effects lead to two consequencies. In adition to widen
the melting transition region, they also cause the shift of
critical point. Compared with the experimental observatio
we find that the boundary effects exhibited by the model
slightly too strong. Experiments have shown that the melt
region does not shift or widen so distinctly by the number
base pairs of DNA@1#. This may be a consequence of th
sole nearest neighboring interaction of the base pairs or
nonoptimal parameters in the model.
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V. EXACT SOLUTIONS FOR DNA
WITH ALTERNATING BASE PAIRS

With the developments of synthetic techniques of DNA
the melting of DNAs with alternating base pairs was carr
out in experiments@32#. These samples offer the advantag
of investigating the effects resulting from the differences
stacking energies. Prohofsky and co-workers have system
cally investigated alternating DNAs by MSPA. In this se
tion, we will see that with the aid of TI techniques, the P
model can be easily extended from the homogeneous c
model to periodical copolymers model without approxim

FIG. 7. ^yi& of each base pair for two homogeneous DNA
1000 and 3000 bp, with open boundaries at different temperatu
The curves from bottom to top correspond toT5340, 342, 344,
346, and 348 K, respectively.

FIG. 8. Differential melting curves for homogeneous DNA
with open boundaries and different lengthN.
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tion. Furthermore, we can take these results as criteria for
extended transfer matrix approachapplied to DNAs with
arbitrary sequences to be analyzed in next section.

Here we consider the differences of binding energies
base pairs G• C and A• T ~where G, C, A, and T denote
guanine, cytosine, adenine, and thymine, respectively!. We
useVs(y) andVw(y) to represent the hydrogen bond pote
tials for G• C and A• T , respectively ~here s means
‘‘strong’’ to denote G• C base pair andw means ‘‘weak’’ for
A• T). They are all Morse potentials, but with different p
rameters. For simplicity, only differentD ’s in Eq. ~2!, i.e.,
Ds and Dw are used to take into account their differenc
without considering the differences of stacking energies
tween base pairs. In this section as well as in the next,
adopt the following parameters:

Ds50.042 eV, Dw50.038 eV, k50.042 eV/Å

with other parameters unchanged.
We first consider the periodic chain with one A• T and

one G• C in a unit cell. Define

Ksw~x,y!5exp„2b$w~x,y!1 1
2 @Vs~x!1Vw~y!#%…

~45!

and

Kws~x,y!5exp„2b$w~x,y!1 1
2 @Vw~x!1Vs~y!#%….

~46!

It is evident that

Ksw~x,y!5Kws~y,x!. ~47!

Thus the partition function can be written as

Z5E dy1dy2•••dyNKsw~y1 ,y2!

3Kws~y2 ,y3!•••Kws~yN ,y1!. ~48!

If we choose the kernel for the TI equation as

K~x,y!5E dzKsw~x,z!Kws~z,y!, ~49!

Eq. ~48! can be expressed as

Z5E dy1dy3•••K~y1 ,y3!K~y3 ,y5!•••K~yN21 ,y1!.

~50!

Taking advantage of the TI technique, we have the free
ergy

f 52
1

2b
lnl1 . ~51!

The thermal expansions are now different for G• C and A• T
base pairs,

^ys&5E dyw1
2~y!y, ~52!
ur

f

-

s
e-
e

n-

while ^yw& can be obtained by swapping the potentia
Vw(y) and Vs(x). This corresponds to an alternative un
cell.

The periodic chains with unit cellss2w, sw2 can be
handled similarly.

Figure 9 shows the calculated^y& for different chains. It
implies the following results.

~i! The melting temperature is roughly proportional to t
content of G• C, which is in agreement with experiment
observations@33#.

~ii ! No subtransition exists in the melting profiles of th
periodic DNAs with two or three base pairs in a unit ce
which is also in agreement with experimental observatio
@32#.

VI. THE EXTENDED TRANSFER MATRIX APPROACH
FOR ARBITRARY SEQUENCES

The most exciting phenomenon in the experiments
DNA melting are their fine structures where the melting tra
sitions are constituted by several subtransitions. In the
absorbances of DNAs, the fine structures are seen as a s
of sharp peaks with a half-width of about 0.3–1.0 K. The
facts result from the local denaturations of DNAs with inh
mogeneous base-pair compositions. In biology, the phen
enon has great significance. It has been proved that the l
denaturations come into being during the initiation of tra
scription @7#. It was also pointed out that the stability o
regions within a promoter affects the efficiency of transcr
tion. For example, the promoters tend to be embedded
relatively A • T-rich regions@34#. Furthermore, the therma
stability of local sequences is the pathway to understand
interactions between DNA molecules and biomolecules

FIG. 9. ^y& vs T for different periodic DNAs. The curves ar
denoted by the composition of base pairs in a unit cell among wh
the curve ‘‘SW6’’ is calculated by the extended transfer matr
approach introduced in Sec. VI. Here ‘‘S’’ and ‘‘W’’ denote G•C
and A•T, respectively. For these DNAs, the^yS&'^yW& within rela-
tive error 5%, so they cannot be distinguished from the curves
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cluding all kinds of drugs and proteins. Chenet al. have
investigated the stabilities of DNA-drug complexes based
the MSPA@35#. They found that the dissociation probabi
ties of drugs were determined not only by the bond typ
connecting the drugs and DNAs, such as hydrogen bo
covalent bonds, and Coulomb interactions, but also by
stabilities of base pairs within the regions.

In the previous section, we have shown that for the p
odic DNA with two or three base pairs in a unit cell, no fin
structures exist. In principle, we can consider a bigger u
cell in order to investigate the fine structures. But the n
merical solutions are quite computationally demanding.
this section, we give a high precision approximate algorit
that makes it possible to calculate the melting profiles
DNAs with any sequences.

In the derivations of the partition functions by the TI tec
nique in Sec. II, we note that Eq.~11!, where the kernel is
expanded by a series of orthonormal base functions, is
cial, but the form of the expansion is flexible. Based on t
idea, we develop a method called the extended transfer
trix approach~ETMA!, which leads to an efficient algorithm
for the melting of inhomogeneous DNA and overcomes
weaknesses of molecular dynamic simulation. The latter
been widely carried out by Peyrardet al. @14,19,36#, and
Profhofsky@13# for this DNA melting model. In our method
the calculation of the thermal expansion of each base pa
well as the partition function can be reduced to the multip
cative computation of a series of matrices.

The partition function is

Z5E dy1dy2•••dyNK ~1!~y1 ,y2!K ~2!~y2 ,y3!•••K ~N!

3~yN ,y1!. ~53!

Here the periodic condition is not always necessary
K ( i )(yi ,yi 11) is defined by

K ~ i !~yi ,yi 11!5exp„2b$wi~yi ,yi 11!1 1
2 @Vi~yi !

1Vi 11~yi 11!#%…, ~54!

where the stacking energywi(yi ,yi 11) and the potential be
tween a base pairVi(yi) are site dependent. For simplicity
we havewi(yi ,yi 11)5w(yi ,yi 11) and letVi(yi) be chosen
from Vs(yi) or Vw(yi).

Two methods are given in order to carry out our ETM
which are different in their ways of expanding the kern
(K ( i )s).

A. Method one

In this method, different kernels are expanded by same
of bases. As noted before,K ( i )(x,y) is defined in the space
$a,b;a,b%, and its norm exists. We can choose any comp
set of orthonormal base functions,$wm(y)%, to expand the
K ( i )(x,y), i.e.,

K ~ i !~x,y!5 (
n,m51

1`

Cnm
~ i ! wn~x!wm~y!, ~55!
n
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which obviously is more general than Eq.~11!. The coeffi-
cient Cnm

( i ) is determined by

Cnm
~ i ! 5E E dxdyK~ i !~x,y!wn~x!wm~y!. ~56!

In practice, Eq.~55! is truncated within the firstM bases.
Thus Eq.~55! is rewritten as

K ~ i !~x,y!' (
n,m51

M

Cnm
~ i ! wn~x!wm~y!. ~57!

Substituting Eq.~57! in to Eq. ~53!, we obtain

Z5 TrS )
i 51

N

C̃~ i !D , ~58!

where the matrixC̃( i ) is given by

C̃nm
~ i ! 5Cnm

~ i ! . ~59!

Thus the partition function becomes the products ofN ma-
trices with dimension ofM . Obviously, Eq.~58! is the dis-
creteness form of Eq.~53!. Compared with the Ising mode
we can see thatC̃( i ) resembles the transfer matrix there. D
to its M dimension, Eq.~58! can be viewed as the Isin
model with Ising spin havingM components. Thus the PB
model can be regarded as an extension of the Ising mode
DNA melting. Because in the experiments on the melting
DNA, the lengths of the DNAs are rarely more than 3000
and M is not too large as long as the base functions
carefully chosen, Eq.~58! can be numerically solved.

If we define the matrixỸ as

Ỹnm[E dywn~y!ywm~y! ~60!

for the periodic boundary conditions, the partition function
given by Eq.~58! and the thermal expansion is

^yi&5
1

Z
Tr@C̃~1!

•••C̃~ i 21!ỸC̃~ i !
•••C̃~N!#. ~61!

For open boundary conditions

Z5 Tr@C̃~1!C̃~2!
•••C̃~N21!Ã# ~62!

and

^yi&5
1

Z
Tr@C̃~1!

•••C̃~ i 21!ỸC̃~ i !
•••C̃~N21!Ã#, ~63!

where the matrixÃ is defined by

Ãnm[E dxwn~x!e21/2 bV1~x!E dywm~y!e2 1/2 bVN~y!.

~64!

B. Method two

Unlike method one, we expand different kernels in diffe
ent bases. We plan to expand the kernel to the form
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FIG. 10. Melting curve~dotted
line! and differential melting
curve ~solid line! for 200 bp
DNA. For comparison, we also
show the melting curves for
DNAs composed by pure A• T
and G• C base pairs, which are
labeled by ‘‘AT’’ and ‘‘GC’’ re-
spectively. Each peak of the dif
ferent melting curve is labeled by
its corresponding temperature
The parameters areDa50.042
eV, Db50.038 eV,a54.45 Å21,
k50.042 eV Å22, a50.35 Å21,
andr50.5.
f
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K ~ i !~x,y!5(
n

ln
~ i !Fn

~ i !~x!Cn
~ i !~y!, ~65!

where $Fn
( i )(x)% and $Cn

( i )(x)% constitute complete sets o
orthonormal base functions respectively, which are dep
dent on the form of the kernel. The approaches to expand
the four kinds of kernelsKss(x,y),Kww(x,y),Ksw(x,y),
Kws(x,y), are as follows. Due to their symmetries, the fir
two kernels can be directly expanded as

Kss~x,y!5(
n

ln
~s!wn

~s!~x!wn
~s!~y! ~66!

and

Kww~x,y!5(
n

ln
~w!wn

~w!~x!wn
~w!~y!, ~67!

where $wn
(s)(x)% and $wn

(w)(x)% are given by the integral
equation

E dyKss~x,y!wn
~s!~y!5ln

~s!wn
~s!~x! ~68!

and

E dyKww~x,y!wn
~w!~y!5ln

~w!wn
~w!~x!, ~69!

respectively. For theKsw , symmetrization should be applied
first. We construct two symmetric kernels,Ksws(x,y), which
is the same as theK(x,y) in Eq. ~49! and Kwsw defined
similarly. According to the theory of integral equation@18#,
there exist eigenvalues and eigenvectors satisfying

E dyKsws~x,y!fn~y!5ln
2fn~x!, ~70!
n-
g

t

E dyKwsw~x,y!cn~y!5ln
2cn~x!, ~71!

andKsw(x,y) can be expanded as

Ksw~x,y!5(
n

lnfn~x!cn~y!. ~72!

Using Eq.~47!, we also have the expansion ofKws(x,y). So
in Eq. ~65! ln

( i ) takes its value among$ln
(s) ,ln

(w) ,ln%, and
Fn

( i ) or Cn
( i ) among$wn

(s) ,wn
(w) ,fn ,cn%.

Now we define matricesD̃ and Z̃ whose elements are

D̃mn
~ i ! [Alm

~ i 21!ln
~ i !^Fm

~ i 21!~yi !uCn
~ i !~yi !& ~73!

and

Z̃mn
~ i ! [Alm

~ i 21!ln
~ i !^Fm

~ i 21!~yi !uyi uCn
~ i !~yi !&. ~74!

respectively. According to the vectorsF ( i )(x) and C ( i )(x),
D̃ ( i ) andZ̃( i ) have eight possible forms. They are determin
by (i 21)th, i th, and (i 11)th base pairs. SoD̃ ( i ) chooses
from $D̃sss,D̃www ,D̃sws,D̃wsw,D̃sww,D̃wws,D̃ssw,D̃wss%
where the first subscript represents the (i 21)th base pair,
the second one thei th, and the third one the (i 11)th. Cor-
respondingly, there are eight kinds ofZ̃( i ).

For the the periodic boundary condition,

Z5 Tr@D̃ ~1!
•••D̃ ~N!# ~75!

and

^yi&5
1

Z
Tr@D̃ ~1!

•••D̃ ~ i 21!Z̃~ i !D̃ ~ i 11!
•••D̃ ~N!#. ~76!

For open boundary condition,

Z5 Tr@B̃D̃ ~2!
•••D̃ ~N21!# ~77!
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and

^yi&5
1

Z
Tr@B̃D̃ ~2!

•••D̃ ~ i 21!Z̃~ i !D̃ ~ i 11!
•••D̃ ~N21!#,

~78!

whereB̃ is defined as

B̃mn[Alm
~1!ln

~N21!E dy1Fm
~1!~y1!e2 1/2 bV1~y1!

3E dyNCn
~N21!~yN!e2 1/2 bVN~yN!. ~79!

C. Numerical results

Carrying out the expansion~57!, we find the choice of the
orthonormal bases is crucial in order to have an effici
algorithm with enough precision. We have tried using a Le
endre orthogonal polynomial, two-dimensional fast Four
transformation, and the eigenvectors of the integral equa

E dyKBB~x,y!w~y!5lw~x! ~80!

to expand it; the last one is found to be the best. The tr
cation approximation can be estimated by

e i5UuuK ~ i !~x,y!uu22 (
j ,k51

M

Cjk
~ i !2U. ~81!

In order to avoid possible overflow in the products of t
coefficient matrices, we divide every matrix that appears
both the numerator and denominator of the expression^yi&
by its largest element.

For the convenience of comparing our method with
molecular dynamics simulation in treating the melting of th
DNA model, we consider the melting of block model DNA
in which A • T blocks and G• C blocks appear alternately i
the chain because this is similar to the sequence pattern
vestigated by Dauxoiset al.except with different parameter
@19#. The two block DNAs studied below are both 1000
long with G• C blocks in the two boundaries, but have d
ferent block lengths: 200 bp and 40 bp.

In our calculation we first control the maximum trunc
tion approximation, i.e.,

e5max$e1 ,e2 , . . . %, ~82!

within the scopee,1.031026. This means that the mini
mum M is about 80 for method one and 40 for method tw
With this approximation, we completely reproduce t
curves shown in Fig. 7 and Fig. 9~the relative errors are les
than about 5%! , indicating that our matrix algorithm is suc
cessful and has high precision. Because the amount of c
putation is heavily dependent on the dimension of the ma
ces, the computation under the above matrix dimensio
rather CPU burning. As we reducedM to detect sensitivity
of the precision of̂ yi&, it was found that even withM as
small as 30 for method one and 20 for method two,
precisions of̂ yi& are intact. With these values, the CPU tim
for every curve shown in Figs. 12 and 13 is less than 10 m
t
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n
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n

e

in-

.

m-
i-
is

e

in

for Sparc-10 work stations. Due to the center symmetry
the base-pair sequence of the two block DNAs, only
thermal expansion of half of the base-pairs is calculated
plotted.

We present the calculated melting profiles (u anddu/dT)
of the block DNAs in Figs. 10 and 11. From Fig. 10 we s
clearly that for the 200 bp DNA, the melting process is co
stituted of two completely separate subtransitions, wh
correspond to the melting of A• T segments and G• C seg-
ments, respectively. This can be further verified by the th
mal expansion of each base pair in different temperatu
shown in Fig. 12. At the temperatures corresponding to
A • T peak and the G• C peak shown by the differentia

FIG. 11. Melting curve~dotted line! and differential melting
curve~solid line! for 40 bp DNA. In order to show them clearly in
a figure, the data fordu/dT are magnified by a factor 1.8. The nin
peaks are enumerated 1, 2, etc. from left to right.

FIG. 12. The thermal expansion^yi& of each base-pair of 200 bp
DNA at the temperatures corresponding to the peaks in its dif
ential melting curve. The dotted straight line^yi&52 is drawn for
reference.
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FIG. 13. ~a!–~c! show the thermal expansion^yi& of each base-pair of 40 bp DNA at the temperatures corresponding to the peaks
differential melting curve.~d! gives the approximate melting temperatures of all segments in the 40 bp DNA and their melting se
~labeled by the numbers near the lines!.
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melting curve in Fig. 10, the centers of the A• T or G • C
segments just cross the line^yi&52 Å, which is defined as
the threshold where the base pairs begin to be out of st
ing. We adjust the temperature near the point correspon
to the melting of A• T segments. It was found that the the
mal expansion of the base pairs in A• T segments change
distinctively while thê yi& in G • C segments hardly shifted
This suggests that the peak is caused by the melting of A• T
segments.

As can be seen from Fig. 11, the melting profile of 40
DNA is much more complicated than that of 200 bp DN
Nine peaks appear in the differential melting curve. In ord
to find the origin of each peak, we plot the^yi&-T curve at
k-
ng

r

various temperatures corresponding to every peak in F
13~a!–13~c!. From the points that are tangent to the lin
^yi&52, we can determine which segments produce the p
at that temperature. The melting temperature of each s
ment and the related peak in the differential melting cu
are plotted and labeled in Fig. 13~d!. From Figs. 11 and
13~d!, we find that the melting of 40 bp DNA can be ap
proximately divided into the A• T melting region~including
peaks 3, 4, 5! and the G• C melting region~including peaks
7, 8, 9! like 200 bp DNA. This can be seen by estimating t
areas of the corresponding peaks because they represe
ratios of the melted base pairs in the corresponding temp
ture regions. The shifts of peaks 1, 2, and 6 from the m
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A • T or G • C region are caused by boundary effect. If w
consider DNA longer than 1000 bp, we shall expect that
areas of these peaks to be less.

It must be noted that even in the same segment, diffe
base pairs melt in rather different temperatures. Noting
feature, we find that the rigorous curve in Fig. 13~d! should
be continuous. The lines only show the typical melting te
peratures of the corresponding segments.

Figures 12 and 13 tell us the melting of the whole DN
begins with bubblings of the base pairs in the center regi
of A • T segments, then they gradually spread to G• C seg-
ments as temperature rises. This is the very zipper me
nism of the melting of DNA presented in the Ising model
DNA melting and discussed by Peyrard and Dauxois@19# in
this model. However, we must note that for the block DN
this mechanism only acts distinctly in DNAs with larg
blocks. With the decrease of the block sizes, the interact
between blocks become stronger, and the melting of
kinds of blocks will synthesize gradually as has been sho
by the comparison between Figs. 10 and 11.

Finally, we give a comparison of our ETMA and the m
lecular dynamics simulation approach. From Fig. 11, we
that the resolution of ETMA can be as fine as 0.3 K, wh
enables it to be applied to a natural inhomogeneous DNA
test the resolution of MD for the same model, we investig
the melting curves (u-T) for the homogeneous DNAs give
by Dauxoiset al. @14#. For a homogeneous DNA with per
odic boundaries, its rigorous melting curve should be a s
function because of the translational invariance of the s
tem. From theiru-T curve, we can see that the melting r
gion strides over tens of Kelvin. This value can be regard
as the temperature fluctuation of the system resulted from
finite time simulating for this strongly nonlinear system. F
the inhomogeneous cases, the temperature fluctuations
even larger@19#. We conclude that for the time being, th
molecular dynamics simulation for this system is less co
petitive as far as the resolution and efficiency are conside
n
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VII. CONCLUSION AND DISCUSSION

In conclusion, it is noteworthy to point out the following
~1! With the introduction of the dissociation equilibrium

process between the two species of DNAs and the parti
of the phase space of the system, an extended PB mod
obtained.

~2! Two versions of the extended transfer matrix a
proaches are given, which are proved to be efficient to c
culate the melting profiles of DNAs with arbitrary sequenc

~3! The PB model has a close relationship with the oth
two DNA melting models, i.e., the Ising model and the la
tice dynamic model. According to the Ising model, it can
found that the nonlinear stacking energy term partly pla
the role of loop entropy factors in the Ising model, whic
may show its reasonableness from a different viewpo
@1,20,30#. As compared with Prohofsky’s lattice dynam
model, PB model keeps its essential nonlinear degree
freedom though the configuration of DNA is highly simpl
fied. This comparision suggests that if all the quadratic ter
in the Hamiltonian of the lattice dynamic model were int
grated out, it could be reduced to a one-dimensional mo
similar to the PB model. If this procedure could be execut
the empirical nonlinear stacking energy term in the P
model may get more clear physical interpretation.

~4! What we have shown in this paper is mainly on t
methodology of a possible new theory of DNA melting.
order to further investigate the reasonableness of this the
the next step should determine all parameters in the mo
and compare the theory with experiments.
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