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Theory of DNA melting based on the Peyrard-Bishop model
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The DNA melting based on the Peyrard-Bish&B) model is systematically investigated. Our study on the
eigenvalues and eigenvectors of the transfer integral equation for the original PB model points out that the
eigenvectors are composed of two kinds: discrete bound states that constitute the internal states of a DNA
molecule and the continuous unbound states that represent its dissociated states. Another process controlling
the melting of DNA—the dissociation equilibrium between duplex and single-stranded DNAs—is introduced,
which leads to an extended model applicable for a realistic DNA chain with a finite humber of base pairs.
Based on the expansion of kernels, the calculations of the thermodynamic quantities of the system are reduced
to multiplication of matrix series. Calculations on model block DNAs show the method is much more efficient
than molecular dynamic simulation and has enough high precision to handle the melting of a natural DNA with
arbitrary sequence. The discreteness effect and nonlinear effect of the model are discussed based on the
Gaussian model. Rigorous melting curves for periodic DNA with two and three base pairs in a unit cell and
boundary effects are presented by the transfer integral apprid@bb63-651X97)01012-X

PACS numbdrs): 87.10+e, 63.70+h, 64.70—-p

[. INTRODUCTION in and interact with the environment, and thus often cannot
be studied individually because of their strong couplings. A
The structure and dynamics of DNA are the key to underbiomolecule, which can be regarded as a thermodynamic
standing its biological effects and have long been subjectedystem[11], has a large surface to volume ratio compared
to extensive theoretical studies. Different phenomena andith the usual thermodynamic systems. This is similar to
properties of DNA have been studied theoretically includingsurface physics, where the materials absorbed on a surface
the melting(or denaturationof DNAs [1], the large ampli- can cause great structural changes, such as reconstruction.
tude fluctuations or nonlinear excitatiof], the structural Water molecules and ions also have a significant effect on
transitions such aB-A or B-Z transition[3], the stabilities the structure of biomolecules. The dynamic interaction be-
of DNA complexes such as drug DNAs and protein DNAstween biomolecules and water, the hydrophobic interaction,
[4], the interactions with molecules in surroundings such aplays an important role in the structure and dynamics of
water and iong5], the structures of supercoiled DNA6],  biomolecules. These interactions, however, remain to be un-
etc. Among these, the study on the melting of DNA plays anderstood.
extremely important role in understanding the structure and A variety of means for simplification have been adopted
dynamics of DNA. in the theories on the dynamics of DNA. They often fall into
However, so far, to our knowledge, there still has been n@ne of two categories. One is to simplify its structure or
theory satisfactory enough to describe multiple interestingstates of motion, the other is to simplify the interaction po-
features of DNA melting. The reasons lie in several aspectdentials. At present, there are two principal theories on the
As a system with many degrees of freedom, it has rathemelting of DNA, which are both good examples of the above
different characteristics from those often encountered in coneategories. One is the helix-coil transition theory based on
densed matter physics. Firstly, the structure and dynamics dhe Ising model introduced in late 1950K2]. In this model,
DNA are very complicatedi7]. Experiments and theoretical the motion of each base pair is assumed to be in only two
analyses indicate that many different excitations could posstates: hydrogen bonde@ntac) or non-hydrogen bond-
sibly coexist in DNA. The motions of the sugar-phosphateedopen. The other is the lattice dynamic theory based on
backbones can be described by phor@jswhile the stretch  the modified self-consistent phonon approéetSPA) [13].
of hydrogen bonds and the rotation of base pairs may pertaifhis theory introduced in 1984 by Prohofsky and co-workers
to solitons with completely different forms such as kinks, has been widely applied to investigate the melting of DNA
breathers, and probably other kinds of solitd8s Further- and the interactions between DNA and drugs. In their model
more, these excitations are strongly coupled to each othéhey employed the real configurations of DNAs given by
and to the surrounding medj&]. It was pointed out that a experiment, but assumed harmonic potentials for all bonds
good DNA model must be nonlinear in natufg0]. Sec- except hydrogen bonds, which were represented by Morse
ondly, the interactions that govern the structures and dynanpotentials with appropriate parameters. Even with such a
ics of DNA are not very clear. Because of the complexity ofsimplification of the interactions, it still seems beyond our
biomolecules, we often have to understand their properties aapacity to find rigorous treatment. In their calculation, the
the level of atomic groups. The interactions between thenMorse potentials were actually replaced by harmonic poten-
are usually many body in nature and cannot be simplified aials with force constants self-consistently determined ac-
the central two-body potentials. Finally, biomolecules existcording to the principle of minimization of free energy. Thus
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it is a linear lattice dynamic theory in nature. model that only retains the basic lattice structure and core
To some extent, the model adopted in this paper is a condegrees of freedom in a DNA chain, but emphasizes the
bination of the above two DNA melting theories. The modelnonlinear effect hidden in it.
was presented by Peyrard and Bishop in 1888. In the PB This paper is organized as follows: In Sec. Il, after intro-
model, each backbone of DNA is simplified as a one dimenducing the PB model, we investigate the technique of trans-
sional chain with nearest neighboring potentials representinfer integral with a highly singular homogeneous integral
stacking energy. The potential of the hydrogen bond in basequation, which has not been encountered in the standard Tl
pair is assumed to be Morse potential between the units dechnique and well studied in mathematics as we know. We
two chains. The main advantages of this model lie in twoexhibits the characteristics of the eigenvalues and eigenvec-
aspects. On one hand, for the homogeneous chain, the models of the Tl equation resulted from this feature. Then we
can be solved rigorously using the technique of transfer inpresent the dissociation process of duplex DNAs to single-
tegral (T1). By comparing the rigorous results with those stranded DNAs so as to construct a complete theory of DNA
obtained from perturbative methods such as self-consistemelting according to the partition of the states of DNA mol-
phonon approackSCPA), one can investigate the nonlinear ecule. In Sec. lll, we investigate the discreteness effect and
nature of the DNA melting14]. On the other hand, it is a nonlinear effect of the model, which are two main features of
unified model treating the DNA melting and the large ampli-the system, based on the rigorous results of the Gaussian
tude fluctuation of base pairs in DNA. Dauxois and Peyraudnodel. Sections IV and V can be considered as the further
have widely investigated the nonlinear excitations of thisapplications of the TI technique. In Sec. IV, we study the
model systenj15]. boundary effect of a homogeneous DNA with finite length
But as a model for DNA melting, it has only been suc- while in Sec. V we calculated the melting curves of periodic
cessfully applied to a special case where the base-pair conBNAs with two or three base pairs in a unit cell. We find
position is homogeneous and the chain is infinite in lengththere are no fine structures in these cases. In Sec. VI, we give
How to extend the model to a more realistic one, i.e., havingwo versions of ouextended transfematrix approaches and
arbitrary sequences and open boundaries, is still an opetompute the melting profiles of two block DNAs with dif-
question. There are two main difficulties in making this ex-ferent block sizes. The calculations show our approach is
tension. One is related to the divergence of the thermodypractical and has the precision high enough to compute the
namic quantities of this model systefh3,16. It has been melting profile of a natural DNA with arbitrary sequence.
shown that the partition function of the Peyraud-BisliBp) Section VIl is a discussion.
model is convergent only in the limit of infinite number of
base pairsN. The other is the inhomogeneity of the base|| MODEL AND ITS STATISTICAL MECHANICAL BASIS
sequence where the transfer integral technique is no longer
valid in this case. In this paper we discuss the methods for A. Peyrard-Bishop model

solving these difficulties. The detailed description of the PB model can be referred
We will show that the first difficulty can be solved by to Refs.[14,17,19. Here we only give a brief introduction.
regarding the melting of DNA as being governed by twoThe motion of the model system can be described by two
processes: the internal unwinding motion within a single dukinds of variables: the displacement of the center of mass of
plex DNA, which can be described by the PB model, and thexach base pair and the separation of the bases in the same
dissociation equilibrium between double-stranded DIA)  pase pair, denoted by, . It is the latter that determines the
and single-stranded DNAC,), i.e., melting of DNA. After the decoupling of the two kinds of
variables, the concerned Hamiltonian of the system is
C,=2C,, L
which can be well described by the law of mass action and Hy ; ZmyszrW(y” V-1 TV ) | @)
has been included in the Ising model of DNA meltif.
Here the scope of the “internal” and the “external” motion HereV(y) is Morse potential
is approximately separated by tliynamic diameter dn

phase space. With the separation of these two different mo- V(y)=D(e ®—1)2 2)
tions, the divergence of the thermodynamic quantities of the
PB model is avoided. andw(y,,Yn_1) the potential between the nearest neighbor-

The second problem can be solved by the expansions afig base pairs, representing stacking energy. This Hamil-
kernels with an appropriate set of orthonormal bases. Th#nian is similar to the Hamiltonians used in the models of
partition function can then be expressed as a series of prodtructural phase transitions except that the on-site potentials
ucts of matrices, which are related to the transfer matrices ithere have two or three minim0,21). Therefore results
the Ising model. So the continuum model can be well apfrom the theories on structural phase transitions can be used
proximated by an extended Ising model wih-component to help the understanding of DNA melting as shown later.
Ising spins, wheréM is the number of base functions usedto  The form of w(y,,y,_1) is crucial to the model. At
expand the kernels. Thus we extend the two-state helix-cojpresent its direct experimental determination or theoretical
transition theory that relies on macroscopic parameters toalculation is still unavailable. As a result empirical forms
M-state theory, which in principle has only microscopic pa-have to be developed based on some general principles. In
rameters. Compared with Prohofsky’s lattice dynamicthe first version of the PB model, they adopted a harmonic
theory, this model can be viewed as a simplified latticepotential. It has been shown that the simple harmonic form
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cannot give a good quantitative description of DNA melting
because the melting scopes given are too wide to determine a K(X,Y)= 2 Ma@n(X)@n(y). (12)
melting temperature accurately. Dauxois and Peyraud pre- "

sented an anharmonic potential to describe the stacking en- By substitution of the expansion expression Kfx,y)
ergy later[17], that is, into Eq. (6) and applying the orthonormal and complete re-
K lations (9) and (10), we have

W(Yn,Yn-1)= E(1+Peia(yrﬁyn_l))(yn_ynfl)z- ) +o0
Z=> ). (12
This modified version of the PB model was proven to be n=1
successful because it may give not only a qualitative but als

a quantitative description of DNA melting. It is to be our
focus in this paper.

%imilarly, from transform invariance of the system, we ob-
tain an average thermal expansion of each base pair,

1
B. Technique of transfer integral (y)= Z; (nly|mxy, (13
Let
) where
K(x,y)=exp(—B{w(x,y) +3[V(X)+V(Y)1), (4)
where the Boltzmann factor {8=1/kT. It is evident that <n|y|m>Ef en(Y)Yem(y).
K(x,y)=K(y,x). (5) At the thermodynamic limit, Eqg12) and(13) can be sim-
lified as
The partition function of the system described Hy can P
then be written as 7= )\T (14)
- and
Z= | dy dy,- - -dynK(Y1,Y2)K(Y2,Y3) - - -K(Yn,Y1)
(6) (y)=(1ly[1), (15
in which a periodic condition is adopted and a trivial mon- respectively.
menta factor is omitted. In the above we have given the standard Tl technique
In order to solve the partition function, one introduces thewidely used in one- or guasi-one-dimensional systems
integral equation [20,21,23. However, significant differences exist between
the PB model and those considered by the standard Tl tech-
_ nigue. In the models using the standard TI technique, all
f KOGY)e(y)dy=re(x). ™ on-site potentials are unbound, thus the condit@nexists.

However, the Morse potential in the PB model is bo{ib8],
Because of the symmetry of the kernel and which implies formula8) does not hold. So the kerng) is
not a Hilbert-Schmidt type one but a singular kernel defined
K(x,y)=>0, on the spacg—, +w; -, +00]. It is this characteristics of
the kernel that leads to the divergence of the partition func-
tion of the PB model. Because of the nonexistence of the
1/2 prerequisite(8), we can easily see that the expansion of the
<o, (8) kernel, which is a crucial step for the Tl technique, does not
hold any more. This indicates that at least in order to to carry
out the TI technique, an upper bound fgr needs to be set
up. But this is not equivalent to saying that the integral equa-
jon (7) does not constitute an eigenvalue problem. In the
ollowing we first study the general features of the eigenval-
ues and eigenvectors of this Tl equation based on numerical
computation. Our strategy is to limit the kernel on a finite
spacd a, b; a, b], therefore its norm exists, and then inves-

if we further assume

IIK(x,y)IIEU f[K(x,y)]zdxdy

the integral equation then contains a positive Hilbert-
Schmidt type kernel18,22. So it has a set of positive ei-
genvalues and orthonormal eigenvectors. If we denote th
eigenvalues ash;, \,, etc. in descending order, and
e1(X),¢2(X), etc. as the corresponding eigenvectors, then

f dX@n(X) @m(X) = Snm, (9) tigate the case whe@— —~ andb— + .
and C. Eigenvalues and eigenvectors of the TI equation
oo A numerical solution of the integral equation is necessary
ey for this statistical mechanical model. Two kinds of methods
nZ‘l en(X)en(y) = 0(X=Y). (10 have been used by Dauxois and Peyrard to solve this TI

equation[16]. One is to discretize the integral by means of
K(x,y) can be expanded 448] summation formulas, then the problem is equivalent to find-
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ing the eigenvalues and eigenvectors of a symmetric matrixpairs at the corresponding temperatures. Noting their sharp
Here the choice of the quadrature rule is very importantpeaks, we can easily see why a high order of the Gauss-
They tried three different formulas: the trapezoidal rules, thd.egendre node is needed.

Simpson rule, and the Bode’s integration rules of order 6 and Here we understand that, although the kernel is singular
10. The last one renders the best accuracy. But even for thishenb— +, due to the existence of the bound states, the
one the needed dimension of the matrix should be as large 83 technique still holds for the limiN—o if we get the
1441x1441. The other approach is Kellog’s method, whichthermodynamic limit by takingN— o before b—o. From

is convenient to compute the first several eigenvalues anfg. (13), we can see

eigenvectors. In this paper, we adopt the first kind of method

but use Gauss-Legendre quadrature formula. We choose the lim lim (y)=(1]y|1). (17)
order of the Gauss-Legendre node to be equal to the number b—s 00N 00

of the points used to discretize the integration, therefore also

equal to the dimension of the matfi4]. With this modifi- This suggests that the extreme situation does exist. However,

cation, we find that a matrix with dimension as small aSwhen N is finite, because of the existence of the unbound

70X 70 is enough to give rather accurate res{#8§]. This states in Eq(13), (y) unavoidably diverges whe—cs, as

fsaésctg(r)naslgonthm is the guarantee of our work in the nextcan be seen from Fig. 3. Similar results were also obtained

At first find the relationship bet : | y Prohofsky and co-workers from molecular dynamics
_AtTirst, wetind the refationship between eigenvalues antg,  ation[13]. This exhibits the inability of the PB model
eigenvectors of the Tl equation and the lower limaitis

o tod ibe the whol f the DNA melting.
rather trivial. Whena<—0.3 A, they no longer change. So © describe the whole process ot the meting

in the following we only concentrate on their dependences
on the upper limito. D. Chain dissociation and @

Figure 1 shows the changes of the first several eigenvec- \ye can see thdi— + = implies a single double-stranded
tors and eigenvalues withand temperature. We can see that pNA molecule occupying infinite space. Obviously it is not
there are two different kinds of eigenvectors. One does noj reg| sjtuation. In the solution of DNA molecules, a great
change with the value df, indicating that it corresponds t0 gea| of them are limited in a finite space. Every DNA mol-

a bou_nd state; the other changes drastically, indicating that gcyle is actually in a finite effective space, thus setting an
pertains to an unbound state. When the temperature rises, th8per bound fob.

bound states gradually become unbound as can be seen fromy; 5150 can be shown that whé is finite, the PB model

the comparison of Figs.(d) and Xb). From Fig. 1b) it can  cannot describe the melting completely. Let consider an ex-
also be found in the interested temperature region from 80 Krame case where a DNA molecule has only one or several
to critical point 350 K, there is only one bound state. As thebase-pairs. We find the melting of the duplex is reduced to a
temperature is so high that the last bound state becomes UgBremical reaction represented by form@a=2C,. This
bound,(y) will increase sharply, indicating the melting of gyggests that we can also regard the melting of DNA with
the system. From Fig. (&), it can be seen that above the pigger finite base pairs as a chemical reaction except this
melting temperature, no bound state exists. Figu@) 1 reaction takes place at a definite small temperature region
shows the changes of the four biggest eigenvalues vérsus onjy. Because the total numbers of particles are not con-
We find that for a bound state, its eigenvalue does nokgryed, the system should be described by a grand canonical
change withb, which is in agreement with the relationship of ensemble, which usually leads to a complex theory. How-
its eigenvector anth. While for unbound states, their eigen- eyer, when the concentration is low, which is the very case
values become degenerate with the risé oThis feature as  of DNA solution in the melting experiments, the interactions
well as the change of the unbound state viitindicates that  petween the solute molecules, except for the collisions, are
all unbound states are degenerated and constitute continuogyg ligible. Thus the system comprises an ideal solution. Sup-
states. The discrete appearance of their eigenvalues is causggge the solution constitutes &f; single-stranded DNA
only by the finite value chosen fdr. Here we can find that mglecules and\, double-stranded DNAduplex DNA mol-

the spectrum of this eigensystem is similar to that derivecscules. The grand partition function for the system is
from the Schrdinger equation describing a particle moving

in a Morse potential. Because of this similarity in the math- Nt le 22‘2

ematical structure of the two problems, we can see from Egs. E(Nt,V,T)= NI N

(12) and Eq.(13) that the melting of DNA can be compared Ny=0 T1* 12"

to the dissociation of a two-atom molecule or the ionization

of an atom under a substitution whereZ, andZ, are the single-particle partition functions of
single-stranded DNA and double-stranded DNA, respec-

Ap=e PelN, (16)  tively, andNy=N;+ 2N, is a constanty the volume of the

solution. Taking the maximum term in the summation for

where e, corresponds the energy of a molecule or an atonfPProximation, we obtain the law of mass action for the

(18

[26,27). equilibrium C,=2C,, i.e.[12],
Figure 2 shows that the first bound state becomes wide
when raising the temperature, but at their peaks they stay
Z; Ny

near zero. From Eq15), we find that the widths of these

—=—= 19
2= N2 Kea (
states actually represent the scopes of fluctuations of the base Z; Ni
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FIG. 1. (8)—(c) show the eigenfunctions calculated at differéntabeled by the numberén A) near the corresponding curves and
different temperatures. Ifa8) ¢; and ¢, are bound states that do not change vaitlwhile ¢5; as an unbound state does. When temperature
rises to 150 Kg, becomes an unbound state) indicates that al = 355 K, which is above the melting temperatdig= 350 K, no bound
state exists any moréd) shows the curves of, vsb. The parameters ai2=0.04 eV,a=4.45 A1 k=0.04eVA 2 «=0.35 A" and
p=0.5.

The single-particle partition functions can be factored intoandz, ;,(T) andZ,;,(T) mainly include the vibrational de-
contributions from external and internal degrees of freedomgrees of freedonil]. For the PB model,
viz.,

= . N/2
Zy(V.T)=Zy0d V. 1) Zy o T), . ( ;_Z) oD o1
Zo(V.T)=Z e V. T) Zojn T), (20

whereZ; ,(V,T),Z, ox{V,T) represent the translational and is the partition function of a single harmonic chain moving
rotational motion of the corresponding species as a wholepn the plateau of the Morse potentizh ;, will be discussed
whose forms were given in the Ising model of DNA melting, below.
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FIG. 2. The curves op, at different temperatures. Note that the
sharp peak ob, is related with the fact that the continuum approxi-

mation is unjustifiable for this model system.

Define 6, as the fraction of double-stranded DNA, which scope represents the fluctuations of the base pairs in a DNA
do not completely denature, i.e., having at least one intadholecule. Figure 2 shows that this scope changes with tem-

base-pair. Then

ANTK ot 1= 1+ 8N7K o

Oeyi= 2N, INT= 22
ext 2 T 4NTKeq ( )
5.0 , -
|
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FIG. 3. The(y) vsb calculated by Eq(44) for three values of

E. Z,n, dynamic diameter and 6;,
Based on the above factorization of the partition func-

tions, we find that forZ,;,, it is only bound states that
should be taken into account for the summation in @4),

ie.,

AN, (23

ZZ,int: n
bound states

Correspondingly, the thermal expansion of the base pair is

rewritten as
1 N
= (nly[mry. (24

Zbound states

(y)=

With the above modification, the divergence of the ther-
modynamic quantities is naturally eliminated. Note that Egs.
(23) and (24) are correct only for the homogeneous chain
with periodical boundary condition where the standard TI
technique is applicable. In the following, we strive to extend
the formulas so that it can hold for the inhomogeneous chain
with open boundaries.

From Eq.(15), we see that the thermodynamic quantity
(y) exhibits an internal product form. This implies that
|@1(y)|? can be regarded as the probability density whose

perature. We define the scope of the eigenvector just below
the melting temperature as tbgnamic diametefdenoted by

d) of duplex DNA molecule because it is the largest separa-
tion of a base pair due to the fluctuations. Whend, the
probability amplitude ofy is nearly zero. This suggests that,

as an approximation, we can choose the subspace d] of

the phase space of the system as the range occupied by in-
ternal states, which leads to a modified PB model with

Hamiltonian

Hy,(_OC<Y1,Y2a 1yN<d) (25)

The above treatment implies that the PB model only de-
scribes the internal motion of a double-stranded DNA mol-
ecule. The value ofl can be estimated from Fig. 2. For the
parametersD=0.04 eV,a=4.45 A1, k=0.04 eVA 2

a=0.35 A"1 andp=0.5[17],
d~30A.

It can be proved that, for the homogeneous chain with peri-
odic boundaries, the above definition of the internal states in
the phase space coincides with the original separation in the
spectrum of the Tl equation where the bound states consti-
tute internal states. According to the form2g,;,, is equal to

the Z in Eqg. (12) and (y) is still expressed by Eq(13),
except the concerned eigenvalues and eigenvectors pertain to
the Tl equation witth=d. Because in this case all states are
gondegenerate, the series in E(2) and (13) are conver-

N, 250, 500, and 1000, at two different temperatures, 340 and 34 - 1 0 .
gent. In the numerical computation, it is found that the first

K. Each curve is labeled by two numbers, indicating thand the ‘
temperature, respectively. We can see that the velocity of the dive€n States ensure the convergences wien200. Figure 4

gence ofy) is drastically affected by the total number of base pairsShows(y) for differentN calculated by two kinds of meth-
and temperature. Divergence is obvious in all cases. To get theds. It can be seen that, although excited states besides

above curves, the number of the Gauss-Legendre nodes used ¢ (Yy) are included in the summation, their contribution to

solve the Tl equatiori7) is chosen to be 800.

(y) is negligible. If(y)=2 A is defined as a melting crite-
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5.0 ) ' ) ' ) O(T) = OintOext- (26)
— N=200
43| —== N=250 ] The calculation off,, has been included in the Ising
a0l Nfsoo model of DNA melting. In the following we mainly consider
- the computation of),,;. This corresponds to the case of long
DNAs (N>600) because for long DNA, the internal un-
winding process governs the melting transition, i.e.,

O(T)~ Oin(T) [1].

o

<y> (A)

Ill. DISCRETENESS AND NONLINEAR EFFECTS

It has been shown by direct comparisons and other calcu-
lations that the model system has strong discreteness effect
and nonlinear effecft14,28, which cause significant conse-
guenceg15,29. In this section, we investigate these effects
from another point of view. The calculations are based on the
self-consistent phonon approximation, taking advantage of
. . . . . . . Gaussian modgR2].

260 280 300 320 340 360 380 400 In Egs.(2) and(3), when temperature is low, the displace-
TEMPERATURE (K) menty, is small, an harmonic approximation for the Morse
potential and stacking energy is legitimate. Neglecting the

FIG. 4.(y) vs T calculated by Eq(13) with b=30 A. The curve trivial kinetic terms, the Hamiltonian is approximately equal
labeled ‘N==" is calculated by Eq{(15), which is overlapped by to
the curve ‘N=500."

0.0

¢ 2
rion of base pairs, the resulted shifts of the melting points are Ho= En: 7 (Un— Un_q)%+ 7u§ : (27)
less tha 3 K when N>200. This indicates that for long
chains, the definitions of the two kinds of internal states ar
consistent and the introduction dfis reasonable.

Besides the chain dissociation, partly unstacking within a b=k 29)
double-stranded DNA molecule is obviously extremely im-
portant, especially for long DNA molecules. According to d
the above separation of the motion of DNA molecule, this?"
process is governed by the modified PB model. Here we give
a threshold of the stacking and unstacking of base pairs in a
duplex DNA molecule. When théy) of a base pair exceeds . L )
a certain value, it can be regarded as out of stacking. For theinc€ the Hamiltoniad, has the form of a Gaussian model
time being, we have to determine this value from the point ofn statistical mechanics, its results can be_convenlently used.
the model itself. The criterion for choosing the threshold 1hUS We get the free energy per base pair
should be that whefly) exceeds the value, it diverges with
slight temperature increase. We find from Fig. 4 that a 1 8
threshold value of 2.0 A is appropriate for this purpose and f=- ﬁlnB(QJr 071 44)?
be used throughout the paper. The ratio of the number of the
intgrnal un_stacking base pairs to the number of total basgnd correlation functions
pairs is defined agj.

It has been noted that, since we chobgp=2 A, as the
criterion of the melting of a base pair, the ground state of the (u2>5<u2>: 1
Tl equation at this critical temperature is insensitive to dif- YOOI+ 4]
ferent parameters of the model, such @s-0.038 eV or
D=0.042 eV(with other parameters unchangedhis indi- 02
cates that it is reasonable for us to extend the conceptof (v2)=(UpUps1)= ( 1+ 2—) (u?)—
an inhomogeneous chain. In the following calculations, we ¢
setd to b. . . . - o

In short, we consider that the melting of an ensemble of In order to investigate the continuum-limit approximation,
DNA molecules consists of two processes: one is the uni/e 're_calculate the free energy bl by the TI technique.
stacking of base pairs in a single duplex DNA molecule,P€fining the kernel
which is described by the modified PB model with the
Hamiltonian given in formulg25) and the other is the dis- T(x y)zexp( y
sociation proces€,—2C,, which is governed by the law of ’
mass action. The average faction of the unstacking base
pairs, 6(T), of the ensemble is given by and using the identity30]

‘?Nhereun=yn, and ¢ andQ? are defined by

0?=2a?D. (29

(30

(31)

1

284 (32

2

d) 2 Q 2
E(x—y) +tox

) (33
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1 t (92 14
f dyexp{—z(x—y)z}f(y)z\/Zwtexp(iﬁ f(x) il —— harm
(349
12

and bearing in mind the continuum approximation, which is
equal to the commutation of two operators h¢p8], we e
simplify the Tl equation into an ordinary differential equa-

tion or
w 9
_i&_Z_FE 022 —(E|2_7T_| )\)
280 o2 5 BOX [ o(X)= 7gg I #(X). gl
(39 .1
The free energy of the system in the continuum approxima- 6l

tion according to its largest eigenvalue is

SR AN
=25 "8s " Na ) (%9

0 50 100 150 200 250 300 350 400 450
TEMPERATURE (K)

iy

Comparing Eq.(30) to Eq. (36) the condition of the con-

tinuum approximation keeping the exact free eneirgyose ) _ .
to f. is FIG. 5. £ vs T for harmonic stacking potentiap&0) and an-
¢ harmonic potential §=0.5).
2

&= ﬁ<l' (37 noted that, because of the strong nonlinear effect, only below
200 K or so can SCPA give correct results, as shown by Fig.
This result agrees with Reff30]. 6. For temperature higher than 200 K, direct comparison has

been given by Dauxoist al.[14]. Combining the two meth-
ods, it is proved that the system exists strong discreteness
£~13>1. (38 effect.
In Fig. 6, we comparg¢y) obtained by SCPA to the exact

The continuum approximation does not hold here at allresults obtained by the Tl technigue. It is shown that two sets
which implies the system has strong discreteness effect. of results are very different. For rigorous calculations, when

In the above we assumed that the displacemgnis  the anharmonic stacking energy is adopted, the results are
small, which corresponds to the low temperature case. Thignproved distinctly. But for the SCPA, the results are almost
analysis does not hold for higher temperature. However, takthe same. This indicates the limitations of the SCPA in treat-
ing advantage of SCPA16,31], which is appropriate for ing strongly nonlinear system.
relatively higher temperature, we can replay the treatment. In
such a caseH, becomes an effective Hamiltonian and 5.0 —
Up,=Yn— 7 With »=(y). Equations(28) and (29) are re- a5 —m B

placed by | ---- SCPA harm
—==- SCPA anharm

For the typical parameters given in Sec. Il E,

4.0
b=k{1+p[1— a®((u?)— (v2))]e~2en " (W) +(oy
(39 351
and 301
24,2 °2
Q2=2Da(2a—a)e a7 12a%u) T 25t
=l
\%
+4Da(a—a)e 2an+2a%u’), (40) 20}
respectively.n is determined by equation L5
Dale” an+ 1/2a%(u?)_ e 2an+ 232<u2)] 1.0}
:akp[<u2>_<U2>]e72a77+a2((u2)+(v2))_ (41) 05¢t
: 0.0 i : . ; . . :
Equations(31), (32), (39), (40), and (41) depend on each 150 200 250 300 350 400 450 500 550
other and could be solved self-consistently. Figure 5 shbws TEMPERATURE (K)

versus temperature. It shows that for the whole temperature
region calculated by SCPA> 1, indicating the invalidity of FIG. 6. The curvegy)-T calculated by the rigorous TI tech-
the continuum approximation for the system. It must benique or SCPA with harmonic or anharmonic stacking potential.
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IV. BOUNDARY EFFECTS 5.5

So far we only consider cases with periodic boundary
conditions. We do not expect different boundary conditions
to be important for long chain DNAs, but for short chain
ones, boundaries may have significant effects on the melting
of DNAs. Because of advantages of shorter moleculers ovel 4,
kilo-base-pair(kbp) long molecules, such as the simplifica- |
tions of the theory-experiment comparisons and convenienc, z 3 5 |
of controlling the systems in equilibrium states, shorter ~

DNAs with 100- 600 bp are far more often adopted experi- &3¢ |
(e

5.0 |

45 |

\%
mentally. It has been pointed out that the melting process

undergoes internal loops formation and end unwinding. For 25
short DNAs, due to the high free energy costs in forming
internal loops, the end meltings will govern the unwinding 2.0 [ ‘
processe$l]. Aiming at showing boundary effects, we con- N
sider the case of open boundaries and investigate the effect 15F% - -
of the end unwinding on the melting of DNAs with different
lengths. Extension from the periodic boundary condition to 1.0

e : 0 500 1000 1500 2000 2500 3000
ops\r/lebgg;;g:ry condition is straightforward. BASE PAIR POSITION

FIG. 7. (y;) of each base pair for two homogeneous DNAs,
1000 and 3000 bp, with open boundaries at different temperatures.
amEf dy(pm(y)efllzﬁv(y) (42 The curves from bottom to top correspond Te=340, 342, 344,
346, and 348 K, respectively.

and V. EXACT SOLUTIONS FOR DNA
WITH ALTERNATING BASE PAIRS

Ymn=(mly|n). 43 With the developments of synthetic techniques of DNAs,
the melting of DNAs with alternating base pairs was carried
ut in experiment$32]. These samples offer the advantages
f investigating the effects resulting from the differences in
tacking energies. Prohofsky and co-workers have systemati-
cally investigated alternating DNAs by MSPA. In this sec-
tion, we will see that with the aid of Tl techniques, the PB
, , model can be easily extended from the homogeneous chain
(yi>:% amanymnAlm_lAE_l/ % azAn"', (49  model to periodical copolymers model without approxima-

As the transform invariance no longer exists, the thermag
averagey;) depends upon the positions of base pairs in th@S
whole chain wheré denotes théth base pair. Thus

3.0
where A, =\,,/\;. The above summation includes all — N=500
eigenstates of the Tl equation in principle. However, numeri- ——= N=1000
cal experiment shows that inclusion of the first ten eigen- 2.5 | —~ N=2000 '\
states is good enough to guarantee the convergendgs)of

The numerical results are presented in Fig. 7 and Fig. 8. '
The curves in Fig. 7 are the thermal expansion curves of two 2901 ’
DNAs with 1000 and 3000 bp in different temperatures. It = l
can be found that the expansions of base pairs near thex |
boundaries are the same for long DNASs, i.e., independent of<, 15 |
N. This fact presents the characteristics of the model with < |
nearest-neighboring interaction. Figure 8 shows the calcu- |
lated differential melting curvesl@;,/dT for DNAs with Lot
different lengths. We can see that for short DNA, the bound- |
ary effects lead to two consequencies. In adition to widening
the melting transition region, they also cause the shift of the
critical point. Compared with the experimental observations,
we find that the boundary effects exhibited by the model are

. . . 0.0 L L
slightly too strong. Experiments have shown that the melting 342 343 344 345 346 347 348 349
region does not shift or widen so distinctly by the number of TEMPERATURE (K)
base pairs of DNA1]. This may be a consequence of the
sole nearest neighboring interaction of the base pairs or the FIG. 8. Differential melting curves for homogeneous DNAs
nonoptimal parameters in the model. with open boundaries and different length
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tion. Furthermore, we can take these results as criteria for our 14
extended transfer matrix approadcipplied to DNAs with
arbitrary sequences to be analyzed in next section.
Here we consider the differences of binding energies of
base pairs GC and A- T (where G, C, A, and T denote
guanine, cytosine, adenine, and thymine, respeciivalie 10
useV(y) andV,(y) to represent the hydrogen bond poten-
tials for G C and A T , respectively (here s means _ sl
“*strong” to denote G C base pair and/ means “weak” for o
A-T). They are all Morse potentials, but with different pa- 5
rameters. For simplicity, only differer®’s in Eq. (2), i.e., Vo6t
D, andD,, are used to take into account their differences
without considering the differences of stacking energies be- al
tween base pairs. In this section as well as in the next, we
adopt the following parameters:
2 -
D.=0.042 eV, D,=0.038 eV, k=0.042 eV/A
0

with other parameters unchanged.
We first consider the periodic chain with one-A and
one G C in a unit cell. Define

Ksw(X,Y)=exp(— B{w(x,y) + 3[Vs(X) + Vu(¥) ]}
(45)

and

Kws(X,y) =exp(— B{w(x,y) + 3[ V() + Vs(Y)1}).

(46)
It is evident that
Ksw(X,Y) =Ky, X). (47)
Thus the partition function can be written as
Z:J dy;dys- - -dynKsu(Y1,Y2)
XKws(Y2,Y3) -+ - Kus(Yn:Y1)- (48)
If we choose the kernel for the Tl equation as
K(x,y)=f dzKsw(X,2)Kys(Z,Y), (49

Eq. (48) can be expressed as

Z=f dy dys- - - K(y1,Y3)K(Ys,Ys) - - - K(Yn-1,Y1)-
(50)

260 280 300 320 340 360 380 400 420
TEMPERATURE (K)

FIG. 9. (y) vs T for different periodic DNAs. The curves are
denoted by the composition of base pairs in a unit cell among which
the curve “SW” is calculated by the extended transfer matrix
approach introduced in Sec. VI. Here “S” and “W” denote-G

and AT, respectively. For these DNAs, tgs)~(yy,) within rela-
tive error 5%, so they cannot be distinguished from the curves.

while {y,) can be obtained by swapping the potentials
V,(y) and V¢(x). This corresponds to an alternative unit
cell.

The periodic chains with unit cells?w, sw? can be
handled similarly.

Figure 9 shows the calculatég) for different chains. It
implies the following results.

(i) The melting temperature is roughly proportional to the
content of G- C, which is in agreement with experimental
observation$33].

(i) No subtransition exists in the melting profiles of the
periodic DNAs with two or three base pairs in a unit cell,
which is also in agreement with experimental observations
[32].

VI. THE EXTENDED TRANSFER MATRIX APPROACH
FOR ARBITRARY SEQUENCES

The most exciting phenomenon in the experiments of
DNA melting are their fine structures where the melting tran-
sitions are constituted by several subtransitions. In the UV
absorbances of DNAs, the fine structures are seen as a series

Taking advantage of the Tl technique, we have the free enef sharp peaks with a half-width of about 0.3-1.0 K. These

ergy

f=

2p

The thermal expansions are now different for Gand A T
base pairs,

In\;. (51

(Y= J dyei(y)y, (52)

facts result from the local denaturations of DNAs with inho-
mogeneous base-pair compositions. In biology, the phenom-
enon has great significance. It has been proved that the local
denaturations come into being during the initiation of tran-
scription [7]. It was also pointed out that the stability of
regions within a promoter affects the efficiency of transcrip-
tion. For example, the promoters tend to be embedded in
relatively A - T-rich regions[34]. Furthermore, the thermal
stability of local sequences is the pathway to understand the
interactions between DNA molecules and biomolecules in-
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cluding all kinds of drugs and proteins. Chehal. have  which obviously is more general than Ed.1). The coeffi-
investigated the stabilities of DNA-drug complexes based omient C{) is determined by
the MSPA[35]. They found that the dissociation probabili-
ties of drugs were determined not only by the bond types
connecting the drugs and DNAs, such as hydrogen bonds,
covalent bonds, and Coulomb interactions, but also by the
stabilities of base pairs within the regions. In practice, Eq.(55) is truncated within the firsM bases.
In the previous section, we have shown that for the peri-Thus Eq.(55) is rewritten as
odic DNA with two or three base pairs in a unit cell, no fine M
structures exist. In principle, we can consider a bigger unit (i) ~ (i)
cell in order to investigate the fine structures. But the nu- KEO0y) n,;zl Comen(X) m(¥)- 67
merical solutions are quite computationally demanding. In
this section, we give a high precision approximate algorithmSubstituting Eq(57) in to Eq. (53), we obtain
that makes it possible to calculate the melting profiles of N
DNAs with any sequences. _ =i
In the derivations of the partition functions by the Tl tech- Z= Tr( iﬂl ct )) ' (58)
nigue in Sec. Il, we note that E@l1), where the kernel is
expanded by a series of orthonormal base functions, is cruyhere the matribxC(" is given by
cial, but the form of the expansion is flexible. Based on this
idea, we develop a method called the extended transfer ma- cl =cl) . (59)
trix approachETMA), which leads to an efficient algorithm
for the melting of innomogeneous DNA and overcomes thelhus the partition function becomes the productsNofna-
weaknesses of molecular dynamic simulation. The latter hagices with dimension oM. Obviously, Eq.(58) is the dis-
been widely carried out by Peyramt al. [14,19,3G, and  creteness form of Eq53). Compared with the Ising model,
Profhofsky[13] for this DNA melting model. In our method, we can see thaE") resembles the transfer matrix there. Due
the calculation of the thermal expansion of each base pair @ its M dimension, Eq.(58) can be viewed as the Ising
well as the partition function can be reduced to the multipli-model with Ising spin havind components. Thus the PB
cative computation of a series of matrices. model can be regarded as an extension of the Ising model of
The partition function is DNA melting. Because in the experiments on the melting of
DNA, the lengths of the DNAs are rarely more than 3000 bp
and M is not too large as long as the base functions are
Z=f dy;dy,- - - dynKP(y1,y2) K@ (y,,y5) - - - KN carefully chosen, Eq’58) can be numerically solved.

If we define the matrixy as

Cgr)n:f JdXdyNi)(X,Y)QDn(X)QDm(Y)- (56)

X(Yn»Y1)- (53

Yom= f d 60
Here the periodic condition is not always necessary and nm Yen(y)yem(y) (60

D (y. v i i
KP(yi,¥i+4) is defined by for the periodic boundary conditions, the partition function is

, . given by Eq.(58) and the thermal expansion is
KOy, Yiv1)=exp(— B{Wi(Yi.Yi+1) + 5[ Vi(yi)

Vi), (54 (yi)= %Tr[ém- COTDYCw...CMy (6D

where the stacking energyi(y;,Vyi+1) and the potential be- For open boundary conditions
tween a base paW;(y;) are site dependent. For simplicity, o _ _
we havew;(y;,Yi.1)=wW(y;,Yi.1) and letV;(y;) be chosen Z= Ti{CWC@...CIN"VA] (62
from V(y;) or Vi(yi).
Two methods are given in order to carry out our ETMA, @nd
which are different in their ways of expanding the kernels

i 1 - —i e ~ ~
(K(l)s)_ (y)y= ZTr[C(l). .CU-DYCW...CIN-DA],  (63)

A. Method one where the matriXA is defined by

In this method, different kernels are expanded by same set
of bases. As noted befor&((x,y) is defined in the space ’,&nmzf dX(Pn()Qe_l/zBVl(x)J’ dyen(y)e™ V2B,
{a,b;a,b}, and its norm exists. We can choose any complete

set of orthonormal base functiongp(y)}, to expand the (64)
KO(x,y), i.e.,
. B. Method two
KO(x,y)= cW o (x , 55 Unlike method one, we expand different kernels in differ-
(x.y) n,;=l m@n(X) @m(Y) 59 ent bases. We plan to expand the kernel to the form
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1.0
09} || 364.9
0.8} =| . FIG. 10. Melting curvedotted
; | line) and differential melting
0.7 339.1 ; || . curve (solid line for 200 bp
|| DNA. For comparison, we also
= 0.6 i /3518 || 1 show the melting curves for
S ! | DNAs composed by pure AT
305 | || . and G- C base pairs, which are
< [1 3418 || labeled by “AT” and “GC” re-
0.4 AT | | GC | spectively. Each peak of the dif-
! ,| ferent melting curve is labeled by
03 ! ,| its corresponding temperature.
’l I I The parameters ardDd,=0.042
0.2 I | | ] eV, D,=0.038 eV,a=4.45 A1,
/ / I k=0.042 eV A2, 0=0.35 A°1,
0.1 // / l andp=0.5.
LT il ~ I

0.0 : : :
330 335 340 345 350 355 360 365 370
TEMPERATURE (K)

K<”<x,y>=§ Ao P 0w (y), (65) f dy KsulX,Y) ¥n(Y) = N2thn(X), (71)

where{®{(x)} and{¥{(x)} constitute complete sets of andKsw(x.y) can be expanded as

orthonormal base functions respectively, which are depen-

dent on the form of the kernel. The approaches to expanding sz(x,y)=2 Nn@n(X) n(Y). (72
the four kinds of kernelsKg {(X,y),Kuyw(X,¥),Ksw(X,Y), "

Kws(X,y), are as follows. Due to their symmetries, the firstugng Eq.(47), we also have the expansion Kf,(x,y). So

two kernels can be directly expanded as in Eq. (65) A0 takes its value amongh® A \.}, and
@Y or ¥ among{e(Y o, ¢, ¥}
KsdX,y) = E AP eP(x)eP(y) (66) Now we define matrice® andZ whose elements are
and D= VA0 IA(@E Py ¥ y))  (73)
and
(x,y)= 2 MY o (x) e (y), (67) = Y .
N " Zor =N INI( @G Yyl P (). (74)

where {¢{P(x)} and {¢{")(x)} are given by the integral respectively. According to the vectofs()(x) and ¥ )(x),
D® andZ® have eight possible forms. They are determined

equation
by (i—1)th, ith, and {+1)th base pairs. S®) chooses
J' dyKg(X, y)(p )(y) )\n (pgs)( X) (68 from {DSSS!DWWW1DSWS!DWSW'DSWW!DWWSlDSSW1 wsy]’
where the first subscript represents the-1)th base pair,
q the second one thigh, and the third one the ¢ 1)th. Cor-
an respondingly, there are eight kinds Bf".
For the the periodic boundary condition,
f dyKuw(% V) ef" (V=20 (x), (69 =
Z=TiDW...DN] (75)

respectively. For th&s,,, symmetrization should be applied zng

first. We construct two symmetric kernel§,,, {X,y), which

is the same as th&(x,y) in Eq. (49 and K, defined 1 i ~

similarly. According to the theory of integral equatifh8], (yi)= ZTr[D<1)- --DOTVZODEHD... DM (76)

there exist eigenvalues and eigenvectors satisfying
For open boundary condition,

f dyKswd %) dn(Y) = Nadhn(X), (70 Z= TBD®@...BN-1) 77
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and 1.0 -
g K
1 0.9 7 ;o
N BD?2 ... pli—-DZHpi+y, . . pN-1) 9 od
(y,) ZTI’[BD D Z'YD D 1, 08 | - £
78 7
78 , !
whereB is defined as 0.6
s
~ — B = 0.5
Brn= VALY 1)J dy, &Py, e /2AV1000) §04
- X
x [ apwt e o, gy 0
0.2
C. Numerical results 0.1
Carrying out the expansiois7), we find the choice of the 0.0 DA ; s . .
orthonormal bases is crucial in order to have an efficient  # 346 3 EMPERAMURE (R 354 356

algorithm with enough precision. We have tried using a Leg-

endre orthogonal polynomial, two-dimensional fast Fourier g 11. Melting curve(dotted ling and differential melting

transformation, and the eigenvectors of the integral equatioByrye (solid line) for 40 bp DNA. In order to show them clearly in
a figure, the data fod 6/d T are magnified by a factor 1.8. The nine

J' dyKgg(X,y)@(Y)=\e(X) (80) peaks are enumerated 1, 2, etc. from left to right.

for Sparc-10 work stations. Due to the center symmetry of
the base-pair sequence of the two block DNAs, only the
thermal expansion of half of the base-pairs is calculated and

to expand it; the last one is found to be the best. The trun
cation approximation can be estimated by

M plotted.
e=||KD(x,y)|]?— > CJ(-L)Z . (81) We present the calculated melting profilésandd 6/dT)
k=1 of the block DNAs in Figs. 10 and 11. From Fig. 10 we see

clearly that for the 200 bp DNA, the melting process is con-
stituted of two completely separate subtransitions, which
rl:orrespond to the melting of AT segments and GC seg-

In order to avoid possible overflow in the products of the

coefficient matrices, we divide every matrix that appears i
both the numerator and denominator of the expres§eN  yents, respectively. This can be further verified by the ther-

by its largest element. _ _ mal expansion of each base pair in different temperatures
molecular cynarmics simulation n reating the metting of his<"®W" " Fg: 12. AL the temperatures corresponding to the

A - T peak and the GC peak shown by the differential
DNA model, we consider the melting of block model DNAs P P y

in which A - T blocks and G C blocks appear alternately in

the chain because this is similar to the sequence pattern in 3578k

vestigated by Dauxoiet al. except with different parameters — 343.0K // BN
[19]. The two block DNAs studied below are both 1000 bp 6| 341.8K / N\
long with G- C blocks in the two boundaries, but have dif- T LK / A

ferent block lengths: 200 bp and 40 bp.
In our calculation we first control the maximum trunca-
tion approximation, i.e.,

e=maxe;, €, ...}, (82

within the scopee<1.0X 10 ®. This means that the mini-
mum M is about 80 for method one and 40 for method two.
With this approximation, we completely reproduce the
curves shown in Fig. 7 and Fig.(¢he relative errors are less
than about 5%, indicating that our matrix algorithm is suc-

cessful and has high precision. Because the amount of com GC AT
putation is heavily dependent on the dimension of the matri- 0 : :
. o L 0 200 400
ces, the computation under the above matrix dimension is BASE PAIR POSITION
rather CPU burning. As we reducéd to detect sensitivity
of the precision ofy;), it was found that even wittM as FIG. 12. The thermal expansidy;) of each base-pair of 200 bp

small as 30 for method one and 20 for method two, theDNA at the temperatures corresponding to the peaks in its differ-
precisions of'y;) are intact. With these values, the CPU time ential melting curve. The dotted straight lifig,)=2 is drawn for
for every curve shown in Figs. 12 and 13 is less than 10 mineference.



56 THEORY OF DNA MELTING BASED ON THE PEYRARD- ... 7113

GC. AT | GC. AT . GC| AT | GC. AT | GC\ AT 1 GC 1 AT dC GC' AT | GC! AT | GC! AT | GC! AT 1 GC! AT 1 GC1 AT dC

1.0 1.0
0 40 80 120 160 200 240 280 320 360 400 440 480 0 40 80 120 160 200 240 280 320 360 400 440 480
BASE PAIR POSITION BASE PAIR POSITION

356 ————————————————————

'
'
'

355 | @

)

|93
W
iy

9 o

8 — —

(3]
W
W

(93]
wn
o

'
'
h
'
'
'
'
'
'
'
'
!

1 h 1
| ' |
| ' |
| ' |
| ' |
| ' |
| ' |
| ' |
| ' |
L ! L

<yi>(A)
(U8 ]
wn
3
(¥

MELTING TEMPERATURE (K
8 %)
B w
=) —

arp L

| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '
| ' | '

GC_: AT ' GC' AT ' GC' AT ' GC' AT ' GC' AT ' GC' AT ' GC GC_: AT:: GC:: AT:: GCE ATE GCE ATE GCE AT£ GCE AT£ gc

1.5 346
0 40 80 120 160 200 240 280 320 360 400 440 480 0 40 80 120 160 200 240 280 320 360 400 440 480
BASE PAIR POSITION BASE PAIR POSITION

FIG. 13. (8—(c) show the thermal expansidwy;) of each base-pair of 40 bp DNA at the temperatures corresponding to the peaks in its
differential melting curve(d) gives the approximate melting temperatures of all segments in the 40 bp DNA and their melting sequence
(labeled by the numbers near the lines

melting curve in Fig. 10, the centers of the-A or G- C  various temperatures corresponding to every peak in Figs.
segments just cross the lidg;)=2 A, which is defined as 13(@-13c). From the points that are tangent to the line
the threshold where the base pairs begin to be out of stacky;)=2, we can determine which segments produce the peak
ing. We adjust the temperature near the point correspondingt that temperature. The melting temperature of each seg-
to the melting of A- T segments. It was found that the ther- ment and the related peak in the differential melting curve
mal expansion of the base pairs in-A segments changes are plotted and labeled in Fig. @3. From Figs. 11 and
distinctively while the(y;) in G - C segments hardly shifted. 13(d), we find that the melting of 40 bp DNA can be ap-
This suggests that the peak is caused by the melting oT A  proximately divided into the A T melting region(including
segments. peaks 3, 4, band the G- C melting region(including peaks

As can be seen from Fig. 11, the melting profile of 40 bp7, 8, 9 like 200 bp DNA. This can be seen by estimating the
DNA is much more complicated than that of 200 bp DNA. areas of the corresponding peaks because they represent the
Nine peaks appear in the differential melting curve. In orderatios of the melted base pairs in the corresponding tempera-
to find the origin of each peak, we plot thig;)-T curve at ture regions. The shifts of peaks 1, 2, and 6 from the main
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A - T or G- C region are caused by boundary effect. If we VIl. CONCLUSION AND DISCUSSION
consider DNA longer than 1000 bp, we shall expect that the |, conclusion, it is noteworthy to point out the following.
areas of these peaks to be less. _ (1) With the introduction of the dissociation equilibrium

It must be noted that even in the same segment, differenrocess between the two species of DNAs and the partition
base pairs melt in rather different temperatures. Noting thigf the phase space of the system, an extended PB model is
feature, we find that the rigorous curve in Fig(d3should gptained.
be continuous. The lines only show the typical melting tem- (2) Two versions of the extended transfer matrix ap-
peratures of the corresponding segments. proaches are given, which are proved to be efficient to cal-

Figures 12 and 13 tell us the melting of the whole DNA culate the melting profiles of DNAs with arbitrary sequences.
begins with bubblings of the base pairs in the center regions (3) The PB model has a close relationship with the other
of A - T segments, then they gradually spread to Gseg- two DNA melting models, i.e., the Ising model and the lat-
ments as temperature rises. This is the very zipper mech&ice dynamic model. According to the Ising model, it can be
nism of the melting of DNA presented in the Ising model of found that the nonlinear stacking energy term partly plays
DNA melting and discussed by Peyrard and Daua@ in  the role of loop entropy factors in the Ising model, which
this model. However, we must note that for the block DNAMay show its reasonableness from a different viewpoint
this mechanism only acts distinctly in DNAs with large [1,20,30. As compared with Prohofsky’s lattice dynamic
blocks. With the decrease of the block sizes, the interaction@0del, PB model keeps its essential nonlinear degrees of
between blocks become stronger, and the melting of twdl€edom though the configuration of DNA is highly simpli-
kinds of blocks will synthesize gradually as has been show_'ed' This comparision suggests that if a!l the quadratic terms
in the Hamiltonian of the lattice dynamic model were inte-
Finally, we give a comparison of our ETMA and the mo- grated out, it could be reduced to a one-dimensional model

lecular dynamics simulation approach. From Fig. 11, we se(ff*imilar to t.he PB mpdel. If this procedure could bg executed,
that the resolution of ETMA can be as fine as 0.3 K, Whichthe empirical nonlinear stackmg energy term in the PB
enables it to be applied to a natural inhomogeneous DNA. T§"0del may get more clear physical interpretation.

test the resolution of MD for the same model, we investigate (4) What we have shown in this paper is mainly on the
the melting curves 4-T) for the homogeneous DNAs given methodology of_a pos_S|bIe hew theory of DNA me'?'”g- In
by Dauxoiset al. [14]. For a homogeneous DNA with peri- order to further investigate the reasonableness of this theory,

odic boundaries, its rigorous melting curve should be a steH1e next step should determine all parameters in the model

function because of the translational invariance of the sys"—’Ind compare the theory with experiments.

tem. From their6-T curve, we can see that the melting re-
gion strides over tens of Kelvin. This value can be regarded
as the temperature fluctuation of the system resulted from the The authors thank Bai-lin Hao, Yingyao Zhou, A. R.
finite time simulating for this strongly nonlinear system. For Bishop, M. Peyrard, and C. R. Willis for kind help and valu-
the inhomogeneous cases, the temperature fluctuations aible discussions. This work was supported in part by the
even largef19]. We conclude that for the time being, the National Natural Science Foundation of China and State Key
molecular dynamics simulation for this system is less comdlaboratory for Scientific and Engineering Computing of
petitive as far as the resolution and efficiency are consideredhina.

by the comparison between Figs. 10 and 11.
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